
GRASS Development Team

GRASS 5.0 Programmer’s Manual
Geographic Resources Analysis Support System

30th January 2004

Edited by

Markus Neteler

Member of GRASS Development Team

ITC-irst

Istituto per la Ricerca Scientifica e Tecnologica

Via Sommarive, 18

38050 Povo (Trento), Italy

�

GMS Laboratory

University of Illinois-Champaign, Urbana, Illinois

Center of Applied Spatial Research

Baylor University, Waco, Texas

�

30th January 2004, Draft Version

�

Based on preliminary programming notes on GRASS 5

written by Olga Waupotitsch and Michael Shapiro (CERL),
Bill Brown (GMSL) and Darrel McCauley (Purdue)

and the former

GRASS 4.2 Programmer’s Manual

edited by Steve Clamons, Bruce Byars (Baylor University)
and basically written by

Michael Shapiro, James Westervelt, Dave Gerdes, Majorie Larson, and
Kenneth R. Brownfield (CERL)

ABSTRACT

GRASS (Geographical Resources Analysis Support System) is a comprehensive GIS with raster,
topological vector, image processing, and graphics production functionality. This manual in-
troduces the reader to the Geographic Resources Analysis Support System version 5.0 from the
programming perspective. Design theory, system support libraries, system maintenance, and
system enhancement are all presented. Standard GRASS 4.x conventions are still used in much
of the code. This work is part of ongoing research being performed by the GRASS Develop-
ment Team coordinated at ITC-irst, Trento, Italy), a worldwide programmer’s team (see below),
the GMS Laboratory at University of Illinois-Champaign (U.S.A.) and the Center of Applied
Geographic and Spatial Research at Baylor University (U.S.A.). GRASS module authors are
cited within their module’s source code and the contributed manual pages.

30th January 2004

c
�

2000 Markus Neteler / GRASS Development Team

Published under GNU Free Documentation License (GFDL)
http://www.fsf.org/copyleft/fdl.html
(see C GNU Free Documentation License (p. 499))

This manual comes with ABSOLUTELY NO WARRANTY.

The development of GRASS software and this manual is kindly supported by Intevation GmbH,
Osnabrück, Germany, who provide the GRASS CVS repository.

European Headquarters: http://grass.itc.it

Unites States Headquarters: http://www3.baylor.edu/grass/

http://www.fsf.org/copyleft/fdl.html
http://grass.itc.it
http://www3.baylor.edu/grass/

Foreword

This manual represents documentation for the third revision to the Geographic Resources Anal-
ysis Support System (GRASS) Geographic Information System (GIS) with version 4.x being
replaced with 5.0.

This work was originally performed by the Environmental Division (EN) of the U.S. Army
Construction Engineering Research Laboratory (USACERL). In August, 1997, GRASS devel-
opment was taken up by the GRASS Development Team at Baylor University. From Summer
1999 to Summer 2001 the GRASS project was coordinated at University of Hannover, Germany,
since Summer 2001 at ITC-irst, Trento, Italy.

Original Authors of the GRASS 4.x Programmer’s Manual are Michael Shapiro, James West-
ervelt, Dave Gerdes, Majorie Larson, and Kenneth R. Brownfield. It is upon their work that
this is based, and we wish for full acknowledgement to go to them for their efforts. Dr. James
Westervelt has provided valuable insight into GRASS for this project. Dr. Robert Lozar of
USA-CERL has also been instrumental in the release of the GRASS 4.2 manual.

The upgrade to GRASS 5 programming API is based on comprehensive notes written in 1995
by Olga Waupotitsch and Michael Shapiro (CERL), Bill Brown (GMSL) and Darrel McCauley
(Purdue University). Their documents have been written in HTML and were merged into
this manual. Further core designers of GRASS 5 libraries and modules have been Roman
Waupotitsch, James Westervelt, David Gerdes, Helena Mitasova, Jaro Hofierka and Lubos Mi-
tas.

A rather complete list of GRASS programmers can be found online:

http://grass.itc.it/grasscredits.html

http://www3.baylor.edu/grass/grasscredits.html

Please notify us in case of contributors missing in this list.

Other Related Materials in the GRASS 5.0 Series

GRASS 5.0 Command Reference

NOTE: This manual is far from being completely updated. Please send your useful comments
to Markus Neteler (neteler@itc.it).

i

http://grass.itc.it/grasscredits.html
http://www3.baylor.edu/grass/grasscredits.html
neteler@itc.it

GRASS 5 Core Team Members

(Status: 10/2000)

Roger Bivand (Norway), Radim Blazek (Czechia), Bill Brown (U.S.A.), Huidae Cho (South Ko-
rea), David D. Gray (U.K.), Jaro Hofierka (Slovak), Justin Hickey (Thailand), John Huddleston
(U.S.A.), Bill Hughes (U.S.A.), Andreas Lange (Germany), Pierre de Mouveaux (France), Lu-
bos Mitas (U.S.A.), Helena Mitasova (U.S.A.), Eric G. Miller (U.S.A.), Eric Mitchell (U.S.A.),
Markus Neteler (Germany), Bernhard Reiter (Germany), Alexander Shevlakov (Russia), Frank
Warmerdam (U.S.A.), Michel Wurtz (France), Lisa Zygo (U.S.A.)

Get latest list here:

http://freegis.org/cgi-bin/viewcvs.cgi/~checkout~/grass/AUTHORS

ii

http://freegis.org/cgi-bin/viewcvs.cgi/~checkout~/grass/AUTHORS

Book status and History

Note: This page will disappear when the book is finished.

This page reflects the current status of the "GRASS 5.0 Programmer’s Manual" and needs to be
updated regularly by book authors.

[$Id: status.tex,v 1.23 2001/04/05 17:20:32 markus Exp $]

Current status:

Markus Neteler 4/2001:
* added HTML web pages, converted to Latex:

- FP added, but needs to be merged furtherly within existing text
- datetime added, but function definitions missing (?, ask Bill Brown)
- sites API added
- g3d API added

* comments are in [] like [GRASS 5: ...] Here further updates
are required.

* added small PROJ4/GRASS API

Contributions from
David D. Gray (vector)
Eric G. Miller (sites)

File list:

progmangrass50.tex -> head of document
progmangrass50.sty -> layout parameters, \Gfunc and Gprog environment are

defined here

chapter1.tex: "Introduction"
- latex updated

chapter2.tex: "Development Guidelines"
- latex updated

chapter3.tex: "Multilevel"
- latex updated

chapter4.tex: "Database Structure"
- latex updated
- added 121 projections

chapter5.tex: "Raster Maps"
- latex updated

chapter6.tex: "Vector Maps"
- latex updated
- 64 bit support needs to be included (Bill Hughes?)

chapter7.tex: "Point Data: Site List Files"
- latex updated

iii

chapter8.tex: "Image Data: Groups"
- latex updated

chapter9.tex: "Region and Mask"
- latex updated
- is window/region terminology clear?

chapter10.tex: "Environment Variables"
- latex updated
- several new variables missing

chapter11.tex: "Compiling and Installing GRASS Modules"
- Auto-conf is not yet explained

chapter12a.tex: "GIS Library 1"
- latex updated
Reference for function definition in Latex!!

chapter12b.tex: "GIS Library 2"
- latex updated for new 5.x functions

chapter12c.tex: "GIS Library 3"
- latex updated
- added new parser functionality (implemented by Huidae Cho

<hdcho@geni.knu.ac.kr>)
- added unix sockets (Eric G. Miller)

chapter13.tex: "Vector Library"
- latex updated

chapter14.tex: "Imagery Library"
- latex updated

chapter15.tex: "Raster Graphics Library"
- latex updated

chapter16.tex: "Display Graphics Library"
- latex updated
- added new functions:

* D_set_dig_name(name)
* sets the name of the dig file currently displayed
*
* D_get_dig_name(name)
* returns the name of the dig file currently displayed

implemented by Huidae Cho <hdcho@geni.knu.ac.kr>

chapter17.tex: "Lock Library"
- latex updated

chapter18.tex: "Rowio Library"
- latex updated

chapter19.tex: "Segment Library"
- latex updated

chapter20.tex: "Vask Library"
- latex updated

iv

proj_datum.tex: "coordinate conversion library"
- latex updated
- added supported proj list
- added PROJ4/GRASS API

grid3d.tex: "GRID3D voxel format"
- latex updated

chapter21.tex: "DateTime Library"
- latex updated
%% Original Chapter 21 is outdated and belongs to GRASS 4.0/v.digit2.
% replaced by DateTime description

gsurf.tex: "gsurf Library for OpenGL programming"
- latex updated

gui.tex: "tcltkgrass and XML/Python GUI programming"
- added

chapter22.tex: "Digitizer/Mouse/Trackball Files (.dgt)"

gmath.tex: "Numerical math interface to LAPACK/BLAS"
- added, latex o.k.

chapter23.tex: "Writing a Graphics Driver"
chapter24.tex: "Writing a Paint Driver"
chapter25.tex: "Writing GRASS Shell Scripts"
chapter26.tex: "GRASS CVS repository"
appendix.tex:
- index available now, generated by makeindex

Contributions:

- David D Gray <ddgray@armadce.demon.co.uk>:
G__write_cats returns 1 on successful completion

- affects at least: G_write_cats, G_write_vector_cats
Fixed.

Numerical math interface to LAPACK/BLAS
added

- Andreas Lange <Andreas.Lange@Rhein-Main.de>:
CC-doc.tex completely written

- Eric G. Miller:
G_readsites_xyz

v

TODO list - Errata

G_tokenize() G_number_of_tokens() and G_free_tokens() are missing
(see libes/gis/token.c)

From: Glynn Clements <glynn.clements@virgin.net>
Date: Mon, 30 Apr 2001 00:16:23 +0100

1. XDRIVER now supports the RGB_RASTER operation natively; if it’s
using a TrueColor or DirectColor visual, it uses logical operations to
convert the data (tested on a 5:6:5 display). No Colormaps,
lookup-tables or similar.

2. libdisplay contains some new functions for RGB raster operations:

D_draw_raster_RGB
D_draw_d_raster_RGB
D_draw_f_raster_RGB
D_draw_c_raster_RGB
D_draw_cell_RGB
D_cell_draw_setup_RGB
D_raster_of_type_RGB
D_set_colors_RGB

These are all more or less analogous to the corresponding functions
without the _RGB suffix, the main difference being that they take
three sets of raster data instead of one.

These functions all use the RGB_RASTER operation, so there are no
colour tables involved. The CELL/FCELL/DCELL values are converted to
bytes using the appropriate channel[1] from the specified colour table
(typically the one from the layer).

[1] I.e. the red components are used for the red layer, etc. If the
layers have suitable grey-scale colour tables, that’ll work.

--
Date: Sat, 16 Dec 2000 14:03:43 -0700
From: "William L. Baker" <BakerWL@uwyo.edu>
Subject: [GRASS5] Programming manual or GIS library corrections?

Hello,

Am working on revision of r.le and not very knowledgeable about
the grass5 revisions in general, so please excuse if I miss something
obvious.

I think the following are just little mistakes in the programming manual:
1. G_zero_raster_row is listed on p. 143 of latest (Nov.) revision of
programming manual, but this does not seem to be the correct name.
It seems that it is G_zero_raster_buf.

2. G_read_fp_range on p. 156. I think the correct order of the parameters

vi

is: (char *name, char *mapset, struct FPRange). The manual lists
struct FPRange first.

3. p. 160 lists G_quant_truncate twice, but I think the second case
should be G_quant_round as that one works OK in my program, and
the description mentions rounding.

The following may be either errors in the programming manual or maybe
the GIS library?
1. G_read_raster_range is listed on p. 156, but does not work at all.
The old G_read_range works fine for CELL, and G_read_fp_range
works for float and double.

2. G_get_colors_min_max() is listed on p. 153, but does not work at all.
This one seems useful and I don’t know what the substitute would be?

Bill Baker
Univ. of Wyoming

--

Modified Files:
parser.c

Log Message:
added xml output of command parameters when issuing flag
--interface-description

chapter12c.tex:\subsection{Parser Routines}

add to gui.tex chapter

Add:

"description"
see examples in all raster modules:

[...]
module = G_define_module();
module->description =

"Finds the average of values in a cover map within "
"areas assigned the same category value in a "
"user-specified base map.";

[... parm definition]

Markus/David mailed:
> Maybe we
> can change this to common GIS vocabulary for GRASS 5.1?
> There was a sort of discussion on this recently.
> Maybe
> 5.0 5.1
> category number -> index
> category label -> attribute

Yes. I think that hits the nail on the head.

R_pad_list();
R_pad_error();

vii

R_pad_select();
R_pad_get_item();
R_pad_freelist();
R_pad_list_items();
R_pad_append_item();
R_pad_delete_item();
R_pad_set_item();
R_pad_create();
R_pad_current();
R_pad_delete();
R_pad_invent();

see d.save
diese Funktionen sind in src/libes/raster unter item_*.c, pad_*.c,
lists.c und perror.c.

Add info about
XDriver/fifos etc.

(compare html/drivers.html)

Add in grid3d.tex:
G_find_grid3 (name, mapset)

src/libes/g3d/find_grid3.c

viii

Contents

1 Introduction 3

1.1 Background . 3

1.2 Objective . 3

1.3 Approach . 4

1.4 Scope . 5

1.5 Mode of Technology Transfer . 5

1.6 GRASS Information Center . 6

2 Development Guidelines 7

2.1 Intended GRASS Audience . 7

2.2 Programming Standards . 8

2.3 Documentation Standards . 10

3 Multilevel 11

3.1 General User . 11

3.2 GRASS Programmer . 12

3.3 Driver Programmer . 14

3.4 GRASS System Designer . 15

4 Database Structure 17

4.1 Programming Interface . 17

4.2 GISDBASE . 17

4.3 Locations . 18

ix

Contents

4.4 Mapsets . 18

4.5 Mapset Structure . 19

4.5.1 Mapset Files . 19

4.5.2 Elements . 20

4.6 Permanent Mapset . 21

4.7 Database Access Rules . 22

4.7.1 Mapset Search Path . 22

4.7.2 UNIX File Permissions . 22

4.8 Supported Projections . 23

5 Raster Maps 27

5.1 What is a Raster Map Layer? . 27

5.2 Raster File Format . 28

5.3 Raster Header Format . 29

5.3.1 Regular Format . 30

5.3.2 Reclass Format . 31

5.4 Raster Category File Format . 32

5.5 Raster Color Table Format . 33

5.6 Raster History File Format . 35

5.7 Raster Range File Format . 36

5.8 Raster Maps: Floating-Point / NULL support (draft, needs to be merged into
tutorial!) . 36

5.8.1 Objectives . 36

5.8.2 Design decisions . 36

6 Vector Maps 41

6.1 What is a Vector Map Layer? . 41

6.2 Ascii Arc File Format . 42

x

Contents

6.2.1 Header Section . 42

6.2.2 Arc Section . 44

6.3 Vector Category Attribute File . 45

6.4 Vector Category Label File . 46

6.5 Vector Index and Pointer File . 46

6.6 Digitizer Registration Points File . 47

6.7 Vector Topology Rules . 47

6.8 Importing Vector Files Into GRASS . 48

7 Point Data: Site List Files 49

7.1 What is a Site List? . 49

7.2 GRASS 5 Site File Format . 49

7.3 Programming Interface to Site Files . 51

8 Image Data: Groups 53

8.1 Introduction . 53

8.2 What is a Group? . 53

8.2.1 A List of Cell Files . 54

8.2.2 Image Registration and Rectification 54

8.2.3 Image Classification . 54

8.3 The Group Structure . 55

8.3.1 The REF File . 55

8.3.2 The POINTS File . 56

8.3.3 The TARGET File . 57

8.3.4 Subgroups . 57

8.4 Imagery Modules . 58

8.5 Programming Interface for Groups . 59

xi

Contents

9 Region and Mask 61

9.1 Region . 61

9.2 Mask . 63

9.3 Variations . 63

10 Environment Variables 65

10.1 UNIX Environment . 65

10.2 GRASS Environment . 66

10.3 Difference Between GRASS and UNIX Environments 67

11 Compiling and Installing GRASS Modules 69

11.1 gmake5 . 69

11.2 Gmakefile Variables . 70

11.3 Constructing a Gmakefile . 72

11.3.1 Building modules from source (.c) files 72

11.3.2 Include files . 73

11.3.3 Building object libraries . 74

11.3.4 Building more than one target . 74

11.4 Compilation Results . 75

11.4.1 Multiple-Architecture Conventions 75

11.4.2 Compiled Command Destinations 76

11.5 Notes . 77

11.5.1 Bypassing the creation of .o files . 77

11.5.2 Simultaneous compilation . 77

12 GIS Library 79

12.1 Introduction to GIS Library . 79

12.2 Library Initialization . 79

xii

Contents

12.3 Diagnostic Messages . 80

12.4 Environment and Database Information . 81

12.5 Fundamental Database Access Routines 84

12.5.1 Prompting for Database Files . 84

12.5.2 Fully Qualified File Names . 86

12.5.3 Finding Files in the Database . 87

12.5.4 Legal File Names . 87

12.5.5 Opening an Existing Database File for Reading 88

12.5.6 Opening an Existing Database File for Update 88

12.5.7 Creating and Opening a New Database File 89

12.5.8 Database File Management . 90

12.6 Memory Allocation . 90

12.7 The Region . 92

12.7.1 The Database Region . 93

12.7.2 The Active Module Region . 94

12.7.3 Projection Information . 96

12.8 Latitude-Longitude Databases . 97

12.8.1 Coordinates . 97

12.8.2 Raster Area Calculations . 99

12.8.3 Polygonal Area Calculations . 100

12.8.4 Distance Calculations . 102

12.8.5 Global Wraparound . 103

12.8.6 Miscellaneous . 104

12.9 Raster File Processing . 105

12.9.1 Prompting for Raster Files . 105

12.9.2 Finding Raster Files in the Database 107

12.9.3 Opening an Existing Raster File . 107

xiii

Contents

12.9.4 Creating and Opening New Raster Files 108

12.9.5 Allocating Raster I/O Buffers . 109

12.9.6 Reading Raster Files . 110

12.9.7 Writing Raster Files . 111

12.9.8 Closing Raster Files . 112

12.10 Raster Map Layer Support Routines . 112

12.10.1 Raster Header File . 113

12.10.2 Raster Category File . 114

12.10.3 Raster Color Table . 116

12.10.4 Raster Range File . 122

12.10.5 Raster Histograms . 123

12.11 GRASS 5 raster API [needs to be merged into above sections] 125

12.11.1 Changes to "gis.h" . 125

12.11.2 New NULL-value functions . 126

12.11.3 New Floating-point and type-independent functions 128

12.11.4 Upgrades to Raster Functions (comparing to GRASS 4.x) 134

12.11.5 Color Functions (new and upgraded) 136

12.11.6 Range functions (new and upgraded) 145

12.11.7 New and Upgraded Cell_stats functions 148

12.11.8 New Quantization Functions . 148

12.11.9 Categories Labeling Functions (new and upgraded) 153

12.11.10 Range functions (new and upgraded) 154

12.11.11 Library Functions that are Deprecated 160

12.11.12 Guidelines for upgrading GRASS 4.x Modules 160

12.11.13 Important hints for upgrades to raster modules 161

12.12 Vector File Processing . 161

12.12.1 Prompting for Vector Files . 161

xiv

Contents

12.12.2 Finding Vector Files in the Database 163

12.12.3 Opening an Existing Vector File . 164

12.12.4 Creating and Opening New Vector Files 164

12.12.5 Reading and Writing Vector Files 165

12.12.6 Vector Category File . 165

12.13 Site List Processing (GRASS 5 Sites API) 166

12.13.1 Part 2 of a Site Record: Attributes 166

12.13.2 Header and Comment Record Format 167

12.13.3 TimeStamp GISlib functions for sites 168

12.13.4 Record Structure and Definitions . 171

12.13.5 Function Prototypes . 171

12.13.6 Sites Programming Examples . 179

12.14 General Plotting Routines . 183

12.15 Temporary Files . 185

12.16 Command Line Parsing . 186

12.16.1 Description . 186

12.16.2 Structures . 187

12.16.3 Parser Routines . 188

12.16.4 Parser Programming Examples . 189

12.16.5 Full Structure Members Description 194

12.16.6 Common Questions . 200

12.17 String Manipulation Functions . 201

12.18 Enhanced UNIX Routines . 204

12.18.1 Running in the Background . 204

12.18.2 Partially Interruptible System Call 205

12.18.3 ENDIAN test . 206

12.19 Unix Socket Functions . 206

xv

Contents

12.19.1 Trivial Socket Server Example . 208

12.20 Miscellaneous . 210

12.21 GIS Library Data Structures . 212

12.21.1 struct Cell_head . 212

12.21.2 struct Categories . 212

12.21.3 struct Colors . 213

12.21.4 struct History . 213

12.21.5 struct Range . 214

12.22 Loading the GIS Library . 214

12.23 Timestamp functions . 214

12.24 GRASS GIS Library Overview . 217

13 Vector Library 219

13.1 Introduction to Vector Library . 219

13.1.1 Include Files . 219

13.1.2 Vector Arc Types . 219

13.1.3 Levels of Access . 220

13.2 Changes in 4.0 from 3.0 . 220

13.2.1 Problem . 220

13.2.2 Solution . 221

13.2.3 Approach . 221

13.2.4 Implementation . 221

13.3 Opening and closing vector maps . 222

13.4 Reading and writing vector maps . 223

13.5 Data Structures . 225

13.6 Data Conversion . 225

13.7 Miscellaneous . 226

xvi

Contents

13.8 Routines that remain from GRASS 3.1 . 230

13.9 Loading the Vector Library . 230

14 Imagery Library 233

14.1 Introduction to Imagery Library . 233

14.2 Group Processing . 233

14.2.1 Prompting for a Group . 234

14.2.2 Finding Groups in the Database . 235

14.2.3 REF File . 235

14.2.4 TARGET File . 237

14.2.5 POINTS File . 237

14.3 Loading the Imagery Library . 238

14.4 Imagery Library Data Structures . 239

14.4.1 struct Ref . 239

14.4.2 struct Control_Points . 240

15 Raster Graphics Library 243

15.1 Introduction . 243

15.2 Connecting to the Driver . 244

15.3 Colors . 244

15.4 Basic Graphics . 246

15.5 Poly Calls . 248

15.6 Raster Calls . 249

15.7 Text . 250

15.8 GRASS font support . 252

15.9 User Input . 252

15.10 Loading the Raster Graphics Library . 253

xvii

Contents

16 Display Graphics Library 255

16.1 Introduction . 255

16.2 Library Initialization . 255

16.3 Frame Management . 256

16.4 Frame Contents Management . 258

16.5 Coordinate Transformation Routines . 260

16.6 Raster Graphics . 263

16.7 Window Clipping . 265

16.8 Pop-up Menus . 266

16.9 Colors . 266

16.10 Loading the Display Graphics Library . 267

16.11 Vector Graphics / Plotting Routines . 267

16.11.1 DISPLAYLIB routines . 268

17 Lock Library 271

17.1 Introduction . 271

17.2 Lock Routine Synopes . 271

17.3 Loading the Lock Library . 272

18 Rowio Library 273

18.1 Introduction . 273

18.2 Rowio Routine Synopses . 273

18.3 Rowio Programming Considerations . 276

18.4 Loading the Rowio Library . 276

19 Segment Library 277

19.1 Introduction . 277

19.2 Segment Routines . 278

xviii

Contents

19.3 How to Use the Library Routines . 280

19.4 Loading the Segment Library . 282

20 Vask Library 283

20.1 Introduction . 283

20.2 Vask Routine Synopses . 283

20.3 An Example Program . 286

20.4 Loading the Vask Library . 287

20.5 Programming Considerations . 288

21 Projection and Datum support 291

21.1 Supported projections . 291

21.2 GRASS and the PROJ4 projection library 293

21.2.1 Include Files . 293

21.2.2 Initialization . 294

21.2.3 Projection of coordinate pairs . 294

21.2.4 Programming Example . 295

21.3 Coordinate Conversion Library (coorcnv) 296

21.3.1 Introduction to the Coordinate Conversion Library 296

21.3.2 Future plans for enhanced map datum support 297

21.3.3 Datum-shift related functions . 300

21.3.4 Latitude-Longitude related functions 304

21.3.5 Projection and inverse projection, UTM, Transverse Mercator 308

21.3.6 changes to gislib . 310

22 Grid3D raster volume library 313

22.1 Directory Structure . 313

22.2 Data File Format . 313

xix

Contents

22.2.1 Transportability of data file . 314

22.2.2 Tile Data NULL-values . 314

22.2.3 Tile Data Compression . 314

22.2.4 Tile Cache . 315

22.2.5 Header File . 316

22.2.6 Region Structure . 317

22.2.7 Windows . 317

22.2.8 Masks . 318

22.2.9 Include File . 319

22.3 G3D Defaults . 319

22.3.1 Cache Mode . 319

22.3.2 Compression . 320

22.3.3 Tiles . 321

22.3.4 Setting the window . 322

22.3.5 Setting the Units . 322

22.3.6 Error Handling: Setting the error function 322

22.4 G3D Function Index . 323

22.4.1 Opening and Closing G3D Files . 323

22.4.2 Reading and Writing Tiles . 325

22.4.3 Reading and Writing Cells . 326

22.4.4 Loading and Removing Tiles . 328

22.4.5 Write Functions used in Cache Mode 329

22.4.6 Locking and Unlocking Tiles, and Cycles 330

22.4.7 Reading Volumes . 332

22.4.8 Allocating and Freeing Memory . 333

22.4.9 G3D Null Value Support . 334

22.4.10 G3D Map Header Information . 334

xx

Contents

22.4.11 G3D Tile Math . 336

22.4.12 G3D Range Support . 338

22.4.13 G3D Color Support . 338

22.4.14 G3D Categories Support . 339

22.4.15 G3D Mask Support . 340

22.4.16 G3D Window Support . 342

22.4.17 G3D Region . 344

22.4.18 Miscellaneous Functions . 345

22.5 Sample G3D Applications . 346

23 DateTime Library 349

23.1 Introduction . 349

23.1.1 Relative vs. Absolute . 349

23.1.2 Calendar Assumptions . 349

23.2 DateTime library functions . 352

23.2.1 ASCII Representation . 352

23.2.2 Initializing, Creating and Checking DateTime Structures 353

23.2.3 Getting & Setting Values from DateTime Structure 356

23.2.4 DateTime Arithmetic . 358

23.2.5 Utilities . 363

23.2.6 Error Handling . 364

23.2.7 Example Application . 365

24 gsurf Library for OpenGL programming (ogsf) 367

24.1 Overview . 367

24.2 Naming Conventions . 368

24.3 Public function prototypes . 368

24.3.1 Function Prototypes for gsurf Library 368

xxi

Contents

24.3.2 Public include file gsurf.h . 380

24.3.3 Public include file keyframe.h . 380

24.3.4 Public color packing utility macros rgbpack.h 381

24.3.5 Private types and defines gstypes.h 381

24.3.6 Private utilities gsget.h . 381

25 Numerical math interface to LAPACK/BLAS 383

25.1 Implementation . 383

25.2 Matrix-Matrix functions . 383

25.3 Matrix-Vector functions . 386

25.4 Vector-Vector functions . 387

25.5 Notes . 388

25.6 Example . 389

26 GUI programming: Graphical user interfaces 391

26.1 TclTkGRASS . 391

26.1.1 TclTkGRASS Programming . 391

26.2 XML/Python . 394

27 Digitizer/Mouse/Trackball Files (.dgt) 395

27.1 Rules for Digitizer Configuration Files . 395

27.2 Digitizer Configuration File Commands . 396

27.2.1 Setup . 396

27.2.2 Startrun, Startpoint, Startquery, Stop, Query 398

27.2.3 Format . 401

27.3 Examples of Complete Files . 404

27.3.1 Example 1 . 404

27.3.2 Example 2 . 406

xxii

Contents

27.4 Digitizer File Naming Conventions . 408

28 Writing a Graphics Driver 409

28.1 Introduction . 409

28.2 Basics . 409

28.3 Basic Routines . 409

28.3.1 Open/Close Device . 410

28.3.2 Return Edge and Color Values . 410

28.3.3 Drawing Routines . 411

28.3.4 Colors . 411

28.3.5 Mouse Input . 412

28.3.6 Panels . 413

28.4 Optional Routines . 414

29 Writing a Paint Driver 415

29.1 Introduction . 415

29.2 Creating a Source Directory for the Driver Code 415

29.3 The Paint Driver Executable Program . 416

29.3.1 Printer I/O Routines . 416

29.3.2 Initialization . 417

29.3.3 Alpha-Numeric Mode . 418

29.3.4 Graphics Mode . 418

29.3.5 Color Information . 420

29.4 The Device Driver Shell Script . 421

29.5 Programming Considerations . 423

29.6 Paint Driver Library . 424

29.7 Compiling the Driver . 424

29.8 Creating 125 Colors From 3 Colors . 426

xxiii

Contents

30 Writing GRASS Shell Scripts 427

30.1 Use the Bourne Shell . 427

30.2 How a Script Should Start . 427

30.3 g.ask . 428

30.4 g.findfile . 429

31 GRASS CVS repository 431

A Appendix 433

A.1 Appendix A: Annotated Gmakefile Predefined Variables 433

A.2 Appendix B: The CELL Data Type . 436

A.3 Appendix C: Index to GIS Library . 438

A.4 Appendix D: Index to Vector Library . 447

A.5 Appendix E: Index to Imagery Library . 448

A.6 Appendix F: Index to Display Graphics Library 449

A.7 Appendix G: Index to Raster Graphics Library 452

A.8 Appendix H: Index to Rowio Library . 453

A.9 Appendix I: Index to Segment Library . 454

A.10 Appendix J: Index to Vask Library . 454

A.11 Appendix K: Index to Grid3D Library Subroutines 455

A.12 Appendix L: Index to DateTime Library Subroutines 457

A.13 Appendix M: Permuted Index for Library Subroutines 459

B Newindex 483

C GNU Free Documentation License 499

1

Contents

2

1 Introduction

1.1 Background

The Geographic Resources Analysis Support System (GRASS) is a geographic information
system (GIS) originally designed and developed by researchers at the U.S. Army Construc-
tion Engineering Research Laboratory (USACERL) and now supported and enhanced by the
GRASS Development Team headquartered at ITC-irst, Trento (Italy) and Baylor University,
Waco (U.S.A.). GRASS provides software capabilities suitable for organizing, portraying and
analyzing digital spatial data.

Since the first release of GRASS software in 1985, the number of users and applications has
rapidly grown. Because GRASS is distributed with source code und GNU General Public Li-
cense, user sites (including many government organizations, educational institutions, and pri-
vate firms) are able to customize and enhance GRASS to meet their own requirements. While
researchers at ITC-irst, University of Illinois-Champaign and Baylor University maintain and
support GRASS with worldwide contributions, as well as develop and organize new versions of
GRASS for release, programmers at numerous sites work directly with GRASS source code.

The release of GRASS 5 under GNU General Public License (GPL) in October 1999 protects
the various authors from misuse of their developments, especially in other proprietary systems.
For the general user the open source model offers full insights into the system. Users can analyse
the methods internally used, understand their functionality, modify methods to their purpose, er-
ror check and, in case required, correct or update methods. The speed to fix problems is usually
much higher than in commercial systems. GRASS 5 is quite stable now and offers many new
features comparing to GRASS 4.x. Another general purpose of the open-source release under
GPL is the opportunity for users to implement their own ideas or to suggest modifications which
could be implemented by everyone familar with programming. Currently GRASS 5 is in the
top-ten list of biggest open-source programs available (http://www.codecatalog.com).

1.2 Objective

Those who work with GRASS source code need detailed information on the structure and orga-
nization of the software, and on procedures and standards for programming and documentation.
The objective of this manual is to provide the necessary information for programmers to under-
stand and enhance GRASS software.

3

http://www.codecatalog.com

1 Introduction

1.3 Approach

GRASS software is continuously updated and improved. In the past, software enhancements
have been developed at various sites, and submitted to USACERL to be shared with other sites
and included in future releases of GRASS. Since CERL announced that it would not develop
any more GRASS releases, the GRASS Development Team at ITC-irst and Baylor University
have taken over development, support, and enhancement of the current GRASS version. Version
5.0 is currently the latest release, and is built largely on the GRASS 4.x source, with the major
enhancement in raster floating point support, the new sites format, the datetime functions and
the new GRID3D raster volume format being incorporation of contributed modules and codes.

With each new release of GRASS, more and more sites have begun working directly with
GRASS source code. Sites are encouraged to use standard procedures in development of new
GRASS capabilities. Sites that develop GRASS software are encouraged to learn and use
GRASS programming libraries, and to use standard procedures for coding, commenting and
documenting software. The use of GRASS libraries and conventions will:

1. Eliminate duplication of functions that already exist in GRASS libraries;

2. Increase the capability of multiple sites to share enhancements;

3. Reduce problems in adapting contributed GRASS capabilities to new data structures and
new versions of GRASS software;

4. Provide some common elements (such as documentation and user interfaces) for users
who use code contributed from multiple sites, and reduce the learning curve associated
with each contributed capability.

The first GRASS Programmer’s Manual was developed for GRASS 2.0 (released in 1987). The
GRASS Programmer’s Reference Manual for GRASS 3.0 (released in 1988) was completely
rewritten due to the numerous and fundamental changes made in GRASS 3.0. The GRASS 4.1
Programmer’s Manual was published in 1993 to reflect further code changes. The GRASS 4.2
Programmer’s Manual was an update of the 4.1 manual and published in 1998.

Because much of GRASS has remained consistent from 3.0 to 4.0 and 4.1 USACERL re-
searchers elected to upgrade the 3.0 Programmer’s Manual to reflect the changes that have
turned GRASS 3.0 into GRASS 4.0. This GRASS 5.0 manual is build on top of GRASS 4.2
manual incorporating the fundamental changes and new functions from GRASS 5.0.

The approach used in the development of this manual involves a systematic effort to describe
GRASS development guidelines, user interfaces, data structures, programming libraries and
peripheral drivers. Since it is based on the GRASS 4.x Programmer’s Manuals, users should
already be familiar with the conventions used here.

4

1.4 Scope

1.4 Scope

Information in this manual is valid for GRASS version 5.0, first time released in Spring 1999.
As changes are made to GRASS libraries, data structures, and user interfaces, elements in this
manual will require updating. Plans to perform updates, and the availability of these updates,
will be announced on the GRASS web sites, in the GRASS mailing list and other GRASS
information forums.

1.5 Mode of Technology Transfer

Federal organizations provide distribution and support services for GRASS within their own
agencies, and several educational institutions and private firms also provide distribution, training
and support services for GRASS. Current information on the status and availability of services
for GRASS can be obtained from the GRASS Development Team located at either the ITC-irst,
Italy, or the Baylor University, Waco, Texas1 .

This manual should prove to be a valuable resource facilitating GRASS software development
efforts at the numerous government agency, educational institutions and private firms that now
use GRASS and plan to modify, enhance or customize the software. Sites that develop new
analytical capabilities or peripheral drivers for GRASS are encouraged to share their products
with others in the GRASS/GIS user community. To facilitate this sharing process among user,
support and development sites, several forums have been established. These include the follow-
ing:

The GRASS Information Center,

An annual GRASS/GIS User Group Meeting,

GRASS Internet sites with an electronic mailing lists and software retrieval forum.

The GRASS Information Center maintains: (1) a set of publications on GRASS and GRASS-
related items, (2) updated information on locations that distribute and support GRASS software
and on training courses for GRASS, (3) the mailing list for user discussion, and (4) updated
information on the status of GRASS user group meetings and software releases.

The annual GRASS / GIS User Group Meeting is hosted by one of the member agencies of
the Coordinating Committee. Papers, demonstrations, and discussion panels present GRASS
applications and software development issues. The meeting provides opportunities for current
and potential users to share and demonstrate new GRASS software.

GRASSNET is an electronic mail forum that provides a mechanism through which GRASS
user and development sites can exchange messages. It can be reached via Internet.2

1See 1.6 GRASS Information Center (p. 6) for phone numbers and mail addresses
2http://grass.itc.it/support.html

5

http://grass.itc.it/support.html

1 Introduction

1.6 GRASS Information Center

Sites wishing to contribute code to GRASS GIS, or wanting to participate in any of these
GRASS/GIS user community forums, should contact one of the GRASS Information Centers,
either at ITC-irst or Baylor University at:

GRASS Development Team
Institute of Physical Geography and Landscape
Ecology
ITC-irst
MPA/SSI
Via Sommarive, 18
38050 Trento (Povo), Italy
email: neteler@itc.it
http://grass.itc.it

GRASS Development Team
Center for Applied Geographic and
Spatial Research
Baylor University
P.O. Box 97351
Waco, Texas 76798-7351

email: grass@baylor.edu
http://www.baylor.edu/~grass

6

neteler@itc.it
http://grass.itc.it
grass@baylor.edu
http://www.baylor.edu/~grass

2 Development Guidelines

GRASS continues its development with several key objectives as a guide. The programmer
should be aware of these and strive to write code that blends well with existing capabilities. All
objectives are based on an understanding of the needs of the end users of GRASS.

2.1 Intended GRASS Audience

GRASS is a general purpose geographic information system. Its intended users are regional land
planners, ecologists, geologists, geographers, archeologists, and landscape architects. Used to
evaluate broad land use suitability, it is ideal for siting large projects, managing parks, for-
est, and range land, and evaluating impacts over wide areas. These users are generally NOT
equipped to write modules or design a system. In many cases they have never used a computer
or even a keyboard.

REGIONAL PLANNING TOOL – GRASS is designed for planning at the county, park, forest,
or range level. It is suitable for planning at a macro scale where the land uses are larger than
30 meters (or so, depending on the database resolution). As yet, no GRASS tools exist for the
modeling and simulation of traffic, electrical, water, and sewage infrastructure loads, or for the
precise positioning of urban structures.

UTM REFERENCED – To facilitate area calculations, a planimetric projection was desired for
initial GRASS development. Funding was provided through Army military installations which
were familiar with the Universal Transverse Mercator (UTM) projection. Due to these factors,
GRASS developed around the UTM coordinate system. The UTM projection allows GRASS
to assume equal area cells anywhere in the database. It also makes distance calculations simple
and straightforward.

LATITUDE-LONGITUDE REFERENCING – It has been recognized that the UTM projection
has limitations that make it awkward if not impossible to use for regions that span two (or
more) UTM zones. Significant capabilities have been added to support latitude-longitude refer-
enced data bases that will support analyses over large regions as well global analysis. However,
the development is incomplete, especially on the vector side [GRASS 5 ????]. The programmer
will find some routines in the libraries which are specifically designed to support this projection.

7

2 Development Guidelines

OTHER PROJECTIONS – Due to the spreading of GRASS usage around the globe it was re-
quired to introduce further projections and coordinate systems into GRASS GIS. GRASS 5.0
is coming along with 121 projections and supporting all important systems worldwide. [see
Appendix of supported projections]

INTERACTIVE – GRASS has a strong interactive component. Its multilevel design allows
users to work either at a very user friendly level, at a more flexible command level, or at a pro-
gramming level. Beside the GRASS command line several graphical user interfaces (GUI) are
available.

GRAPHIC ORIENTED – Many of the functions can be accompanied by graphic output results.

FOR NONPROGRAMMER – Users of GRASS are often first-time users of a GIS. To this end,
it is important that the programmer take the extra time to provide on-line help, clear prompts,
and user tutorials.

INEXPENSIVE – GRASS can run on personalcomputers in the under-$2,000 range. Higher-cost
equipment should be necessary only for providing faster analyses, and more disk and memory
space. It might be required for data-intense analysis. The software itself is freely available
under GNU General Public License.

PORTABLE – This system is intended to be as portable as possible. Groups interested in
GRASS resoundingly stated that portability is the number one concern, ranking firmly above
speed and user friendliness. GRASS code must run on a wide variety of hardware configura-
tions. GRASS 5.0 was tested in 32bit environment as well as on 64bit platforms. The "auto-
configure" tool allows to guess system specific parameters automatically for the compilation of
the GRASS source code package.

2.2 Programming Standards

Programming is done within the following guidelines.

UNIX ORIENTED – Primarily for the purpose of portability, GRASS will continue its devel-
opment under the UNIX operating system environment. Programmers should write code in
ANSI-C style [GRASS 5: is that correct??]. Optionally it is intended to fully compile GRASS
on WINDOWS-based platforms.

C LANGUAGE – All code is written in the C programming language. Some Fortran 77 code
has occasionally been adopted into the system, but problems with portability, efficiency, and

8

2.2 Programming Standards

legibility have resulted in most Fortran modules being rewritten in C.

FUNCTION LEVELS – GRASS is designed within a functional level scheme. Each level is
designed to perform particular functions. Programming must be done within this scheme.

Briefly, these levels are as follows:

Specialized Interface Level – The new and occasional user would work at this level. It is
expected that specialized models, natural language interfaces, graphic pop-up menu front-
ends, and fancier menus will be developed in the future. GRASS modules developed at
this level may be specifically designed for one hardware arrangement. [GRASS 5: ??]

Command Level – This is the level most used. Using the user’s login shell, GRASS com-
mands are made available through internal modification of the PATH variable. Help and
on line manual commands are available as well as the graphical user interface "tcltkgrass".

In version 2.0, GRASS modules included both user interface and module function capa-
bilities and were highly interactive. GRASS 3.0 introduced complementary command-
line versions of these functions in which the information required by the module was
provided by the user on the command line or in the standard input stream (with no
prompting). This provided the advanced user greater flexibility and the system analyst
a high-level GIS programming language in concert with other UNIX utilities. However,
this resulted in a doubling of the number of commands: one for the interactive form,
another for the command-line form.

Since GRASS 4.1 the interactive and command-line versions of a module have been
"merged" into a single module (as far as the user is concerned). This merging should
be understood by programmers developing new code. It is described in 11 Compiling
and Installing GRASS Modules (p. 69). A standard command-line interface has been
developed to complement the existing interactive interface, and an attempt has been made
to standardize the command names.

Programming Level – For even greater flexibility in the application of GRASS, a user has
the opportunity to module GRASS functions in the C language. The main restrictions here
are that the programmer is to use the existing GRASS function libraries to the greatest
extent possible.

Library Level – Work at the library level should be done with the cooperation and approval
of one group. At this writing, that group is the GRASS programming staff from GRASS
Development Team and worldwide contributors. The most critical functions are those
that manipulate data. It is believed that these functions will be more permanent than the
database structure. Though the database structure may change, these functions (and the
programming environment) will not. Code management is centralized in CVS system
(see 31 GRASS CVS repository (p. 431)).

9

2 Development Guidelines

2.3 Documentation Standards

GRASS is a system under terms of GNU General Public License. While such systems are inex-
pensive to new sites wishing to adopt them, costs incurred in putting up the system, modifying
the code, and understanding the product can be very high. To minimize these costs, GRASS
modules shall be thoroughly documented at several levels.

Source code – The source code for the functions should be accompanied by liberal amounts
of descriptive variables, algorithm explanations, and function descriptions.

On-line help – Brief help/information will be available for the new user of a module.

Online manual – Manual entries in the style of the UNIX manual entries will also be
available to the user. Additionally these manual entries are published online in HTML
format.

Tutorial – The tools that are more involved or difficult to use shall be accompanied by
tutorial documents which teach a user how to use the code. These have been written in
nroff/troff using the ms macro package 1 or in LATEX format. Final documents have been
kept separate from the GRASS directories, though it is suggested that they appear with
appropriate "makefiles" under $GISBASE/tutorials.2 [GRASS 5: ???]

1This package, invoked with the -ms option to nroff, is documented in section 7 of its UNIX manual.
2$GISBASE is the directory where GRASS is installed. See 10.1 UNIX Environment (p. 65) for details.

10

3 Multilevel

As introduced in the previous section, the overall GRASS design incorporates several levels:

� Specialized Interfaces

� Command Level

� Programming Level

� Library Level

Each level is associated with a different type of user interface.

3.1 General User

The general GRASS user is someone with a skill in some resource area (e.g., planning, biology,
agronomy, forestry, etc.) in which GRASS can be used to support spatial analysis. Such users
have no significant computer skills, know nothing of UNIX, and may struggle with the learning
curve for GRASS. Such users should select a Specialized Interface, if available, where they are
guided through the GRASS system or a specific application in a friendly way. Programs written
at this level may take many forms in the future. The promise of a natural language capability
may take form here. Current success with graphic menu systems in other applications will lead
to pleasant graphic screens with pull-down menus. Interfaces developed at this level (and this
level only) may be hardware specific. GRASS may take the form of a voice-activated system
with fancy AI capabilities on one machine, while it is driven by a pull-down menu system which
is also tightly interfaced to an RDBMS on another [GRASS 5 ???]. All versions, however, will
rely heavily on the consistent commands available at the Command Level. It is anticipated that
specialized analysis models using little or no user input will be developed shortly, making use
of UNIX shell scripts and Command Level programs. These models will be written by system
analysts and will require no knowledge of C programming. Until improvements in speed and
cost of hardware and flexibility of software are made available, most general users of GRASS
will interface the system through the Command Level.

The Command Level requires some knowledge of UNIX. The user starts up the GRASS tools
individually through the UNIX shell (commonly Bash, Bourne or Csh). Once a GRASS tool is
started, the user either enters a very friendly and interactive environment or provides information
to the tool in the form of arguments on the command line. Users are not prompted through
graphics. Prompting is restricted to written interaction.

11

3 Multilevel

3.2 GRASS Programmer

The GRASS programmer, using an array of programming libraries, writes interactive tools and
command line tools. Programmers must keep in mind that Special Interfaces tools will be:

a. Written for the occasional user;

b. Verbose in their prompting;

c. Accompanied by plenty of help; and

d. Give the user few options.

The programmer also writes Command Level tools. These:

a. Can run in batch (background) mode;

b. Take input from the command line, standard input, or a file;

c. Can run from a shell; and

d. Operate with a standard interface.

GRASS programmers should keep the following design goals in mind:

a. Consistent user interface;

b. Consistent database interface;

c. Functional consistency;

d. Installation consistency; and

e. Code portability.

As much as possible, interaction with the user (e.g., prompting for database files, or full screen
input prompting) must not vary in style from module to module. All GRASS modules must ac-
cess the database in a standard manner. Functional mechanisms (such as automatic resampling
into the current region and masking of raster data) which are independent of the particular al-
gorithm must be incorporated in most GRASS programs. Users must be able to install GRASS
(data, programs, and source code) in a consistent manner. Finally, GRASS modules must com-
pile and run on most (if not all) versions of UNIX. To achieve these goals, all programming
must adhere to the following guidelines:

Use C language – This language is quite standard, ensuring very good portability. All of the
GRASS system libraries are written in C. With very few exceptions, GRASS modules are also

12

3.2 GRASS Programmer

written in C. While UNIX machines offer a Fortran 77 compiler, experience has shown that F77
code is not as portable or predictable when moved between machines. Existing Fortran code
has occasionally been adopted, but programmers often prefer to rewrite the code in C.

Use Bourne shell – GRASS also makes use of the UNIX command interpreter to implement
various function scripts, such as menu front-ends to a suite of related functions, or application
macros combining GRASS command level tools and UNIX utilities. Portability requires that
these scripts be written using the Bourne Shell (/bin/sh) and no other. See 30 Writing GRASS
Shell Scripts (p. 427).

Do not access data directly – The GRASS database is NOT guaranteed to retain its existing
organization and structure. These have changed in the past; however, the library function calls
to the data have remained more consistent over time. Plans do exist to significantly change the
data organization. While the programmer should be aware of the data capabilities and limita-
tions, it should not be necessary to open and read data files directly.

Use GRASS Compilation Procedures – GRASS code is compiled using a special procedure 1
which is a front-end to the UNIX make utility. This procedure allows the programmer to con-
struct a file with make rules containing instructions for making the binary executables, manual
and help entries, and other items from the directory’s contents. However, there are no hardcoded
references to other GRASS programs, libraries, or directories. Variables defining these items
are provided by the procedure and are used instead. This allows the compilation and installation
process to remain identical from system to system. This procedure is described in detail in 11
Compiling and Installing GRASS Modules (p. 69).

Use GRASS libraries – Use of the existing GRASS programming libraries speeds up pro-
gramming efforts. While user and data interface may make up a large part of a new module,
the programmer, using existing library functions, can concentrate primarily on the analysis al-
gorithms of the new tool. Such modules will maintain a consistency in data access and (more
importantly) a degree of consistency in the user interface. The libraries are listed briefly below.

GIS Library. This library contains all of the routines necessary to read and write the
GRASS raster data layers and their support files. General GRASS database access rou-
tines are also part of this library. A standardized method to prompt the user for map
names is available. The library also provides some general purpose tools like memory
allocation, string analysis, etc. Nearly all GRASS modules use routines from this library.
See 12 GIS Library (p. 79).

Vector Library. GRASS was developed primarily as a raster map analysis and display sys-
tem, but got vector capabilities. The principal uses of GRASS vector files are to generate
raster maps and to plot base maps on top of raster map displays. Further developments
like vector based network analysis are in progress.

However, it is anticipated that additional analysis and data import capabilities will be
added to the vector database. Many vector formats exist in the GIS world, but GRASS

13

3 Multilevel

has chosen to implement its own internal vector format. The format is a variant of arc-
node. The Vector Library provides access to the GRASS vector database. See 13 Vector
Library (p. 219).

Segment Library. For modules that need random access to an entire map layer, the seg-
ment library provides an efficient paging scheme for raster maps. While virtual memory
operating systems perform paging, this library sometimes provides better control and ef-
ficiency of paging for raster maps. See 19 Segment Library (p. 277).

Vask Library. This screen-oriented user interface is widely used in the GRASS programs.
It provides the programmer with a simple means for displaying a particular screen layout,
with defined fields where the user is prompted for answers. The user, using the carriage
return (or line-feed), Cursor keys and Ctrl-k keys, moves from prompt to prompt, filling
an answer into each field. When the ESC-RETURN keys are struck, the answers are pro-
vided to the module for analysis. Users have found this interface pleasant and consistent.
See 20 Vask Library (p. 283).

Graphics Libraries. Graphics design has been a difficult issue in GRASS development.
To ensure portability and competitive bidding, GRASS has been designed with graphics
flexibility in mind. This has meant restricting graphics to a minimal set of graphics prim-
itives, which generally do not make full use of the graphics capabilities on all GRASS
machines. Two libraries, displaylib and rasterlib, are involved in generating graphics.
The rasterlib contains the primitive graphics commands used by GRASS. At run time,
modules using this library communicate (through fifo files) with another module which
translates the graphics commands into graphics on the desired device. Each time the
module runs, it may be talking to a different graphics device. Functions available in the
rasterlib include color setting and choosing, line drawing, mouse access (with three types
of cursor), raster drawing operations, and text drawing. Generally, this library is used in
conjunction with the displaylib. The displaylib provides graphics frame management
routines, coordinate conversion capabilities, and raster data to raster graphic conversions.
See 16 Display Graphics Library (p. 255) and 15 Raster Graphics Library (p. 243).

3.3 Driver Programmer

GRASS modules are written to be portable. To this end, a tremendous amount of modularity is
designed into the system. Throughout its development, GRASS modules have become increas-
ingly specialized. The original monolithic approach continues to fragment into ever smaller
pieces. Smaller pieces will allow future developers and users ev er more variability in the
mixing of the tools. This modularity has been manifested in the graphics design. A graphics-
oriented tool connects, at run time, to a graphics driver (or translator) module. This separate
process understands the standard graphics commands generated by the GRASS tool, and makes
the appropriate graphics calls to a particular graphics device. Each graphics device available to
a user is accompanied by a driver module, and each module understands the graphics calls of
the application module. Porting of GRASS to a new system primarily means the development
of one new graphics driver. See 28 Writing a Graphics Driver (p. 409).

14

3.4 GRASS System Designer

Those sites using the digitizing software of GRASS must also provide driver routines for their
digitizer. These routines, unlike the above graphics calls, are compiled directly into the digitiz-
ing modules. See 27 Digitizer/Mouse/Trackball Files (.dgt) (p. 395). Similarly, GRASS sites
may wish to write code to support different hardcopy color printers (inkjet, thermal, etc.). See
29 Writing a Paint Driver (p. 415).

3.4 GRASS System Designer

GRASS system design has mostly been done at one location: USACERL. However, in August,
1997, the GRASS Development Team at Baylor University took over development of GRASS.
From 1998 onwards the University of Hannover and worldwide programmers and groups joined
the team. One, and only one group must be responsible for the design of the system at the
database and fundamental library level. As the software is released under terms of GNU General
Public License, sites are free to do their own work. However, the strength of future GRASS
releases depends on cooperation and sharing of software. Therefore, it is strongly encouraged
that database design and database library development be fully coordinated with GRASS
Development Team headquartered at University of Hannover and Baylor University. The
team members can be reached over internet, mail, FAX and phone.

15

3 Multilevel

16

4 Database Structure

This chapter presents the programmer interested in developing new applications with an ex-
planation of the structure of the GRASS databases, as implemented under the UNIX operating
system.

4.1 Programming Interface

GRASS Programmers are provided with the GIS Library, which interfaces with the GRASS
database. It is described in detail in 12 GIS Library (p. 79). Programmers should use this
library to the fullest extent possible. In fact, a programmer will find that use of the library will
make knowledge of the database structure almost unnecessary. GRASS modules are not written
with specific database names or directories hardcoded into them. The user is allowed to select
the database or change it at will. The database name, its location within the UNIX file sys-
tem, and other related database information are stored as variables in a hidden file in the user’s
home directory. GRASS modules access this information via routines in the 12 GIS Library (p.
79). The variables that specify the database are described briefly below; see 10 Environment
Variables (p. 65) for more details about these and other environment variables.

Note. These GRASS environment variables may also be cast into the UNIX environment to
make them accessible for shell scripts.1 In the discussion below, these variables will appear
preceded by a dollar sign ($). However, C programs should not access the GRASS environment
variables using the UNIX getenv() since they do not originate in the UNIX environment. GIS
Library routines, such as G_getenv, must be used instead.

4.2 GISDBASE

The database for GRASS makes use of the UNIX hierarchical directory structure. The top level
directory is known as GISDBASE. Users specify this directory when entering GRASS. The
full name of this directory is contained in the UNIX environment variable $GISDBASE, and is
returned by library routine G_gisdbase.

1using g.gisenv; see 30 Writing GRASS Shell Scripts (p. 427)

17

4 Database Structure

4.3 Locations

Subdirectories under the GISDBASE are known as locations. Locations are independent databases.
Users select a location when entering GRASS. All database queries and modifications are made
to this location only. It is not possible to simultaneously access multiple locations. The cur-
rently selected location is contained in the environment variable $LOCATION_NAME, and is
returned by the library routine G_location.

GISDBASE

I

—————————————

I I I

location.1 location.2 location.3 ...

When users select a location, they are actually selecting one of the location directories.

Note. GISDBASE may be changed to the parent directory of other sets of locations, notably
on other system hard disks for database management purposes. Note that GRASS modules will
only work within one location under one GISDBASE directory in a given GRASS session.

4.4 Mapsets

Subdirectories under any location are known as mapsets. Users select a mapset when entering
GRASS. New mapsets can be created during the selection step. The selected mapset is known
as the current mapset. It is named in the environment variable $MAPSET and returned by
G_mapset.

LOCATION

I

————————————————–

I I I I I

mapset.1 mapset.2 mapset.3 ... PERMANENT

Modifications to the database can only be made in the current mapset. Users may only select
(and thus modify) a mapset that they own (i.e., have created). However, data in all mapsets for
a given location can be read by anyone (unless prevented by UNIX file permissions). See 4.7

18

4.5 Mapset Structure

Database Access Rules (p. 22) for more details. When users select a mapset, they are actually
selecting one of the mapset directories.

Note. The full UNIX directory name for the current mapset is

$GISDBASE/$LOCATION_NAME/$MAPSETand is returned by the library routine G_location_path.

Note. Each location will have a special mapset called PERMANENT that contains non volatile
data for the location that all users will use. However, it also contains some information about
the location itself that is not found in other mapsets. See 4.6 Permanent Mapset (p. 21).

4.5 Mapset Structure

Mapsets will contain files and subdirectories, known as database elements. In the diagram
below, the elements are indicated by a trailing /.

MAPSET

I

———————————————————————–

I I I I I I I

SEARCH_PATH WIND cats/ cell/ paint/ windows/ ...

4.5.1 Mapset Files

The following is a list of some of the mapset files used by GRASS programs:

files function
GROUP current imagery group
SEARCH_PATH mapset search path
WIND current region

This list may grow as GRASS grows. The GROUP file records the current imagery group
selected by the user, and is used only by imagery functions. The other two files are fundamental
to all of GRASS. These are WIND and SEARCH_PATH.

19

4 Database Structure

WIND is the current region.2 This file is created when the mapset is created and is modified by
the g.region command. The contents of WIND are returned by G_get_window. See 9.1 Region
(p. 61) for a discussion of the GRASS region.

SEARCH_PATH contains the mapset search path. This file is created and modified by the
g.mapsets command. It contains a list of mapsets to be used for finding database files. When
users enter a database file name without specifying a specific mapset, the mapsets in this search
path are searched to find the file. Library routines that look for database files follow and use
the mapset search path. See 4.7.1 Mapset Search Path (p. 22) for more information about the
mapset search path.

4.5.2 Elements

Subdirectories under a mapset are the database elements. Elements are not created when the
mapset is created, but are created dynamically when referenced by the application programs.3

Mapset data reside in files under these elements.

The dynamic creation of database elements makes adding new database elements simple since
no reconfiguration of existing mapsets is required. However, the programmer must be aware
of the database elements already used by currently existing modules when creating new ele-
ments. Furthermore, as development occurs outside USACERL, guidelines must be developed
for introducing new element names to avoid using the same element for two div erse purposes.

Programmers using shell scripts must exercise care. It is not safe to assume that a mapset has
all, or any, database elements (especially brand new mapsets). Certain GRASS commands au-
tomatically create the element when it is referenced (e.g., g.ask). In general, however, elements
are only created when a new file is to be created in the element. It is wise to explicitly check for
the existence of database elements.

Here is the list of some of the elements used by GRASS modules written at USACERL:

element function
cell binary raster file (INT)
fcell binary raster file (FLOAT/DOUBLE)
cellhd header files for raster maps
cats category information for raster maps
colr color table for raster maps
colr2 secondary color tables for raster maps
cell_misc miscellaneous raster map support files (projection etc.)
hist history information for raster maps

dig binary vector data
dig_ascii ascii vector data
dig_att vector attribute support

2Under GRASS 3.0 this was called the database ”window”. However, the term ”window” has many meanings.
For clarity this term has been replaced by the term ”region”. The database files and programming interfaces,
however, hav e not been renamed. Thus WIND now contains the current region.

3See 12.5.7 Creating and Opening a New Database File (p. 89).

20

4.6 Permanent Mapset

dig_cats vector category label support
dig_plus vector topology support
reg digitizer point registration

arc ascii ARC/INFO ungenerate files (for data exchange)
bdlg binary dlg files (for data exchange)
dlg ascii dlg files (for data exchange)
dxf ascii DXF files (for data exchange)

camera camera specification files used by i.ortho.photo
icons icon files used by p.map
paint label and comment files used by p.map
group imagery group support data
site_lists site lists for sites related modules
windows predefined regions

COMBINE r.combine scripts
WEIGHT r.weight scripts

Note. The mapset database elements can be simple directory names (e.g., cats, colr) or mul-
tilevel directory names (e.g., paint/labels, group/xyz/subgroup/abc). The library rou-tines that
create the element will create the top level directory and all subdirectories as well.

4.6 Permanent Mapset

Each location must have a PERMANENT mapset. This mapset not only contains original raster
and vector files that must not be modified, but also several special files that are only found in
this mapset. The files MYNAME and DEFAULT_WIND and are never modified by GRASS
software. The

MYNAME contains a single line descriptive name for the location. This name is returned by
the routine G_myname.

DEFAULT_WIND contains the default region for the location. The contents of this file are
returned by G_get_default_window. This file is used to initialize the WIND file when GRASS
creates a new mapset. and can be used by the user as a reference region at any time.

PROJ_INFO contains detailed projection parameters.

PROJ_UNITS contains the projection units information.

21

4 Database Structure

4.7 Database Access Rules

GRASS database access is controlled at the mapset level. There are three simple rules:

1. A user can select a mapset as the current mapset only if the user is the owner of the mapset
directory (see 4.4 Mapsets (p. 18)).

2. GRASS will create or modify files only in the current mapset.

3. Files in all mapsets may be read by anyone (see 4.7.1 Mapset Search Path (p. 22)) unless
prohibited by normal UNIX file permissions (see 4.7.2 UNIX File Permissions (p. 22)).

4.7.1 Mapset Search Path

When users specify a new data file, there is no ambiguity about the mapset in which to create
the file: it is created in the current mapset. However, when users specify an existing data file, the
database must be searched to find the file. For example, if the user wants to display the ”soils”
raster map, the system looks in the various database mapsets for a raster file named ”soils.” The
user controls which mapsets are searched by setting the mapset search path, which is simply a
list of mapsets. Each mapset is examined in turn, and the first ”soils” raster file found is the one
that is displayed. Thus users can access data from other users’ mapsets through the choice of
the search path.

Users set the search path using the g.mapsets command.

Note. If there were more than one ”soils” file, the mapset search mechanism returns the first one
found. If the user wishes to override the search path, then a specific mapset could be specified
along with the file name. For example, the user could request that ”soils@PERMANENT” be
displayed.

4.7.2 UNIX File Permissions

GRASS creates all files with read/write permission enabled for the owner and read only for
everyone else; directories are created with read/write/search permission enabled for the owner
and read/search only for everyone else.4 This implies that all users can read anyone else’s data
files. Read access to all files in a mapset can be controlled by removing (or adding) the read and
search permissions on the mapset directory itself using the GRASS g.access command, without
adversely affecting GRASS programs. If read and search permissions are removed, then no
other user will be able to read any file in your mapset.

4This means -rw-r–r–for files, and drwxr-xr-x for directories. It is accomplished by setting the umask to 022 in all
GRASS programs.

22

4.8 Supported Projections

Warning. Since the PERMANENT mapset contains global database information, all users must
have read and search access to the PERMANENT mapset directory5 . Do not remove the read
and search permissions from PERMANENT.

4.8 Supported Projections

GRASS Projection software is based on PROJ4 from USGS.

New site since 2000: http://www.remotesensing.org/proj/

ll -- Lat/Lon
utm -- Universe Transverse Mercator
stp -- State Plane
aea -- Albers Equal Area
lcc -- Lambert Conformal Conic
merc -- Mercator
tmerc -- Transverse Mercator
leac -- Lambert Equal Area Conic
laea -- Lambert Azimuthal Equal Area
aeqd -- Azimuthal Equidistant
airy -- Airy
aitoff -- Aitoff
alsk -- Mod. Stererographics of Alaska
apian -- Apian Globular I
august -- August Epicycloidal
bacon -- Bacon Globular
bipc -- Bipolar conic of western hemisphere
boggs -- Boggs Eumorphic
bonne -- Bonne (Werner lat_1=90)
cass -- Cassini
cc -- Central Cylindrical
cea -- Equal Area Cylindrical
chamb -- Chamberlin Trimetric
collg -- Collignon
crast -- Craster Parabolic (Putnins P4)
denoy -- Denoyer Semi-Elliptical
eck1 -- Eckert I
eck2 -- Eckert II
eck3 -- Eckert III
eck4 -- Eckert IV
eck5 -- Eckert V
eck6 -- Eckert VI
eqc -- Equidistant Cylindrical (Plate Caree)
eqdc -- Equidistant Conic
euler -- Euler
fahey -- Fahey
fouc -- Foucaut
fouc_s -- Foucaut Sinusoidal
gall -- Gall (Gall Stereographic)
gins8 -- Ginsburg VIII (TsNIIGAiK)

5PERMANENT has the DEFAULT_WIND and MYNAME files. This is a minor design flaw. Global database
information should be kept in the database, but not in any of the mapsets. All mapsets could then be treated
equally.

23

http://www.remotesensing.org/proj/

4 Database Structure

gn_sinu -- General Sinusoidal Series
gnom -- Gnomonic
goode -- Goode Homolosine
gs48 -- Mod. Stererographics of 48 U.S.
gs50 -- Mod. Stererographics of 50 U.S.
hammer -- Hammer & Eckert-Greifendorff
hatano -- Hatano Asymmetrical Equal Area
imw_p -- International Map of the World Polyconic
kav5 -- Kavraisky V
kav7 -- Kavraisky VII
labrd -- Laborde
lagrng -- Lagrange
larr -- Larrivee
lask -- Laskowski
lee_os -- Lee Oblated Stereographic
loxim -- Loximuthal
lsat -- Space oblique for LANDSAT
mbt_s -- McBryde-Thomas Flat-Polar Sine (No. 1)
mbt_fps -- McBryde-Thomas Flat-Pole Sine (No. 2)
mbtfpp -- McBride-Thomas Flat-Polar Parabolic
mbtfpq -- McBryde-Thomas Flat-Polar Quartic
mbtfps -- McBryde-Thomas Flat-Polar Sinusoidal
mil_os -- Miller Oblated Stereographic
mill -- Miller Cylindrical
mpoly -- Modified Polyconic
moll -- Mollweide
murd1 -- Murdoch I
murd2 -- Murdoch II
murd3 -- Murdoch III
nell -- Nell
nell_h -- Nell-Hammer
nicol -- Nicolosi Globular
nsper -- Near-sided perspective
nzmg -- New Zealand Map Grid
ob_tran -- General Oblique Transformation
ocea -- Oblique Cylindrical Equal Area
oea -- Oblated Equal Area
omerc -- Oblique Mercator
ortel -- Ortelius Oval
ortho -- Orthographic
pconic -- Perspective Conic
poly -- Polyconic (American)
putp1 -- Putnins P1
putp2 -- Putnins P2
putp3 -- Putnins P3
putp3p -- Putnins P3’
putp4p -- Putnins P4’
putp5 -- Putnins P5
putp5p -- Putnins P5’
putp6 -- Putnins P6
putp6p -- Putnins P6’
qua_aut -- Quartic Authalic
robin -- Robinson
rpoly -- Rectangular Polyconic
sinu -- Sinusoidal (Sanson-Flamsteed)
somerc -- Swiss. Obl. Mercator
stere -- Stereographic
tcc -- Transverse Central Cylindrical
tcea -- Transverse Cylindrical Equal Area

24

4.8 Supported Projections

tissot -- Tissot
tpeqd -- Two Point Equidistant
tpers -- Tilted perspective
ups -- Universal Polar Stereographic
urm5 -- Urmaev V
urmfps -- Urmaev Flat-Polar Sinusoidal
vandg -- van der Grinten (I)
vandg2 -- van der Grinten II
vandg3 -- van der Grinten III
vandg4 -- van der Grinten IV
vitk1 -- Vitkovsky I
wag1 -- Wagner I (Kavraisky VI)
wag2 -- Wagner II
wag3 -- Wagner III
wag4 -- Wagner IV
wag5 -- Wagner V
wag6 -- Wagner VI
wag7 -- Wagner VII
weren -- Werenskiold I
wink1 -- Winkel I
wink2 -- Winkel II
wintri -- Winkel Tripel

25

4 Database Structure

26

5 Raster Maps

This chapter provides an explanation of how raster map layers are accommodated in the GRASS
database1 .

5.1 What is a Raster Map Layer?

GRASS raster map layers can be conceptualized, by the GRASS programmer as well as the
user, as representing information from a paper map, a satellite image, or a map resulting from
the interpretation of other maps. Usually the information in a map layer is related by a common
theme (e.g., soils, or landcover, or roads, etc.). GRASS raster data are stored as a matrix of
grid cells. Each grid cell covers a known, rectangular (generally square) patch of land. Each
raster cell is assigned a single integer attribute value called the category number. For example,
assume the land cover map covers a state park. The grid cell in the upper-left corner of the
map is category 2 (which may represent prairie); the next grid cell to the east is category 3 (for
forest); and so on.

land cover

2 3 3 3 4 4
2 2 3 3 4 4
2 2 3 3 4 4
1 2 3 3 3 4
1 1 1 3 3 4
1 1 3 3 4 4

1 = urban 3 = forest

2 = prairie 4 = wetlands

In addition to the raster file itself, there are a number of support files for each raster map layer.
The files which comprise a raster map layer all have the same name, but each resides in a
different database directory under the mapset. These database directories are:

1The descriptions given here are for GRASS 5.x data formats only. Previous formats, still supported by GRASS
but no longer generated, are described in documents from earlier releases of GRASS.

27

5 Raster Maps

directory function
cell binary raster (cell) files (int-format)
fcell binary raster (cell) files (FP-format)
cellhd raster header files
cats raster map category information
colr raster map color tables
colr2 alternate raster map color tables
hist raster map history information
cell_misc miscellaneous raster map support information

For example, a raster map named soils would have the files cell/soils, cellhd/soils, colr/soils,
cats/soils, etc.

Note. Database directories are also known as database elements. See 4.4 Mapsets (p. 18) for a
description of database elements.

Note. GIS Library routines which read and write raster files are described in 12.9 Raster File
Processing (p. 105).

5.2 Raster File Format

The programmer should think of the raster data file as a two-dimensional matrix (i.e., an array
of rows and columns) of integer values. Each grid cell is stored in the file as one to four 8-bit
bytes of data. An NxM raster file will contain N rows, each row containing M columns of cells.

The physical structure of a raster file can take one of 3 formats: uncompressed, compressed, or
reclassed.

Uncompressed format. The uncompressed raster file actually looks like an NxM matrix. Each
byte (or set of bytes for multibyte data) represents a cell of the raster map layer. The physical
size of the file, in bytes, will be rows*cols*bytes-per-cell.

Compressed format. The compressed format uses a run-length encoding schema to reduce the
amount of disk required to store the raster file. Run-length encoding means that sequences of
the same data value are stored as a single byte repeat count followed by a data value. If the data
is single byte data, then each pair is 2 bytes. If the data is 2 byte data, then each pair is 3 bytes,
etc. (see Multibyte data format 29 below). The rows are encoded independently; the number
of bytes per cell is constant within a row, but may vary from row to row. Also if run-length
encoding results in a larger row, then the row is stored non-run-length encoded. And finally,
since each row may have a different length, there is an index to each row stored at the beginning
of the file.

Reclass layers. Reclass map layers do not contain any data, but are references to another map
layer along with a schema to reclassify the categories of the referenced map layer. The reclass
file itself contains no useful information. The reclass information is stored in the raster header
file.

28

5.3 Raster Header Format

Multibyte data format. When the data values in the raster file require more than one byte, they
are stored in big-endian format2, which is to say as a base 256 number with the most significant
digit first.

Examples:

cell value base 256 stored as
868 = 3*256 + 100 3 100
137,304 = 2*256 � + 24*256 + 88 2 24 88
174,058,106 = 10*256 � + 95*256 � + 234*256 + 122 10 95 234 122

Negative values are stored as a signed quantity, i.e., with the highest bit set to 13:

cell value base 256 stored as
1 = -(1) 1 0 0 0 1
868 = -(3*256 + 100) 1 0 0 3 100
137,304 = -(2*256 � + 24*256 + 88) 1 0 2 24 88
174,058,106 = -(10*256 � + 95*256 � + 234*256 + 122) 1 10 95 234 122

All data values in a given row are stored using the same number of bytes. This means that if the
value 868, which uses 2 bytes, occurred in a row that uses 3 bytes to represent the largest data
value, 868 would be stored as 0 3 100 .

Also, one row may only require 2 bytes to store its data values, another 4 bytes, and yet another
1 byte. The rows are stored independently and would be stored using 2 bytes, 4 bytes, and 1
byte respectively.

File portability. The multibyte format described above is (except possibly for negative values)
machine independent. If raster files are to be moved to a machine with a different cpu, or
accessed using a heterogeneous network file system (NFS), the following guidelines should be
kept in mind. All 5.0 format 4 raster files will transfer between machines, with two restrictions:
(1) if the file contains negative values, the size of an integer on the two machines must be the
same; and (2) the size of the file must be within the seek capability of the lseek() call5.

5.3 Raster Header Format

The raster file itself has no information about how many rows and columns of data it contains,
or which part of the earth the layer covers. This information is in the raster header file. The

2The fact that the values are stored big-endian should not be construed to mean that the machine architecture must
also be big-endian. The programs which read raster files perform the necessary arithmetic to construct the value.
They do NOT assume anything about byte ordering in the cpu.

3This means that the value is stored using as many bytes as required by an integer on the machine (usually 4).
4The raster file format did not change from 3.0 to 4.x.
5This usually means that the size of a long integer on the two machines is the same.

29

5 Raster Maps

format of the raster header depends on whether the map layer is a regular map layer or a reclass
layer.

Note. GIS Library routines which read and write the raster header file are described in 12.10.1
Raster Header File (p. 113).

5.3.1 Regular Format

The regular raster header contains the information describing the physical characteristics of the
raster file. The raster header has the following fields:

raster header

proj: 1
zone: 18
north: 4660000
south: 4570000
east : 770000
west : 710000
e-w resol: 50
n-s resol: 100
rows: 900
cols: 1200
format : 0
compressed: 0

proj, zone The projection field specifies the type of cartographic projection6 :

� 0 is unreferenced x,y (imagery data)
� 1 is UTM
� 2 is State Plane
� 3 is Latitude-Longitude
� 99 other (see the PERMANENT/PROJ_INFO file for detailed definition)

Others may be added in the future. The zone field is the projection zone. In the example
above, the projection is UTM, the zone is 18.

north, south, east, west The geographic boundaries of the raster file are described by the north,
south, east, and west fields. These values describe the lines which bound the map at its
edges. These lines do NOT pass through the center of the grid cells at the edge of the
map, but along the edge of the map itself.

6State Plane is not yet fully supported in GRASS and Latitude-Longitude is still under development [GRASS
5:???]

30

5.3 Raster Header Format

n-s resol, e-w resol The fields e-w resol and n-s resol describe the size of each grid cell in the
map layer in physical measurement units (e.g., meters in a UTM database). They are also
called the grid cell resolution. The n-s resol is the length of a grid cell from north to
south. The e-w resol is the length of a grid cell from east to west. As can be noted, cells
need not be square.

rows, cols The fields rows and cols describe the number of rows and columns in the raster
matrix.

format The format field describes how many bytes per cell are required to represent the raster
data. 0 means 1 byte, 1 means 2 bytes, etc. The value -1 indicates that it is a floating
point raster map which is stored in fcell/ subdirectory instead if cell/ subdirectory.

compressed The compressed field indicates whether the raster file is in compressed format or
not: 1 means it is compressed and 0 means it is not. If this field is missing, then the raster
file was produced prior to GRASS 3.0 and the compression indication is encoded in the
raster file itself.

Note. If the rows and columns of the raster matrix are not stored in the raster header, they are
computed from the geographic boundaries as follows:

rows = (north - south) / (ns resol)

cols = (east - west) / (ew resol)

If the rows and columns of the raster matrix are stored in the raster header, the resolution values
are computed from the geographic boundaries as follows:

ns resol = (north - south) / (rows)
ew resol = (east - west) / (cols)

5.3.2 Reclass Format

If the raster file is a reclass file, the raster header does not have the information mentioned
above. It will have the name of the referenced raster file and the category reclassification table.

reclass header

31

5 Raster Maps

reclass
name: county
mapset: PERMANENT
#5 first category in reclass
1 5 is reclassified to 1
0 6 is reclassified to 0
1 7 is reclassified to 1
0 8 is reclassified to 0
2 9 is reclassified to 2

In this case, the library routines will use this information to open the referenced raster file in
place of the reclass file and convert the raster data according to the reclass scheme. Also, the
referenced raster header is used as the raster header.

5.4 Raster Category File Format

The category file contains the largest category value which occurs in the data, a title for the map
layer, an automatic label generation capability, and a one line label for each category.

category file

5 categories
title for map layer
<automatic label format>
<automatic label parameters>
0:no data
1:description for category 1
2:description for category 2
3:description for category 3
5:description for category 5

The number which follows the # on the first line is the largest category value in the raster
file. The next line is a title for the map layer. The next two lines are used for automatic label
generation. They are used to create labels for categories which do not have explicit labels. (The
automatic label capability is not normally used in most map layers, in which case the format
line is a blank line and the parameters line is: 0.0 0.0 0.0 0.0.) Category labels follow on the
remaining lines. The format is cat : label.

The first four lines of the file are required. The remaining lines need only appear if categories
are to be labeled.

32

5.5 Raster Color Table Format

Note. GIS Library routines which read and write the raster category file are described in 12.10.2
Raster Category File (p. 114).

GRASS 5.x category table file

� The Categories table file is now upgraded to support floating-point ranges of values for
fp maps. So instead of

cat1:description

the format is the same for integer maps, but in addition the new format for floating point
map is supported.

val1:val2:description

or

val1:description

where value1 and value2 are floating-point numbers.

� All support functions (e.g. range, cell_stats, colors) should assume that the data has
embedded NULL values.

5.5 Raster Color Table Format

The GRASS raster color tables and associated programming interface have undergone a fairly
major revision to resolve problems presented by raster maps that have a large range of data
values. The previous design7 used arrays to store a color for each data value between the
minimum and maximum values in the raster map. This array structure was also reflected in
the format of the color table file–each color stored as a single line in the color file. Because
GRASS raster maps can have data values in the range � 21474836478 this method of storing
color information is clearly untenable.

Since GRASS 4.x the above problem is solved by representing color tables as linear ramps
for intervals of data values. Colors are specified (and stored) for the endpoints of each interval.
Colors for values between endpoints are not stored but are computed using a linear interpolation
scheme.

The following is an example 4.x color file:

4.x color table file

% 1387 1801

7GRASS 3.x
8These values are for 32-bit architectures.

33

5 Raster Maps

1387:255:85:85
1456:170:170:0

colors for categories
1387-1456

1456:170:170:0
1525:85:255:85

colors for categories
1456-1525

1525:85:255:85
1594:0:170:170

colors for categories 15251594

1594:0:170:170
1663:85:85:255

colors for categories
1594-1663

1663:85:85:255
1732:170:0:170

colors for categories
1663-1732

1732:170:0:170
1801:255:85:85

colors for categories
1732-1801

The first line is a % character (to indicate that this is a 4.x format color file) and two numbers
indicating the minimum and maximum data values which have colors. The rest of the file are
the color descriptors. In this example, the minimum and maximum values are 1387 and 1801.
Looking at the first color line, the color for category 1387 is red=255, green=85, blue=85;
the color for category 1456 is red=170, green=170, blue=0.9 The color for category 1400 is
calculated from the colors for categories 1387 and 1456:

red= interpolate(255,170) = 239

green = interpolate(85,170) = 101

blue = interpolate(85,0) = 69

There are other formats which are simply variants of this format. For example, if the red, green,
and blue intensities are all the same, then only the ”red” value appears. This next example
defines a gray scale color table:

4.x color table file

% 1387 1801

1387:0 1801:255

Also, if the starting and ending categories are the same, only the first appears:
9The colors are represented as levels of red, green, and blue, where 0 represents the lowest intensity and 255

represents the highest intensity

34

5.6 Raster History File Format

4.x color table file

%1 6

1:34:179:112

2:233:110:15

3:127

4:43:135:33

5:70:7:52

6:93:210:163

Note. GIS Library routines which read and write the raster color table are described in 12.10.3
Raster Color Table (p. 116).

GRASS 5.x color table file

� All support functions (e.g. range, cell_stats, colors) should assume that the data has em-
bedded NULL values.

� The color table file is now upgraded to support floating-point ranges of values. So instead
of

cat1:red:grn:blu cat2:red:grn:blu

the format is now

value1:red:grn:blu value2:red:grn:blu

where value1 and value2 are floating-point numbers. Also now color table file can
contain entries of the form

*:red:grn:blu

default color (this sets the rgb for all values for which no explicit rgb values were defined
in the color table)

nv:red:grn:blu

(this sets color for drawing "no data" cells

5.6 Raster History File Format

The history file contains historical information about the raster map: creator, date of creation,
comments, etc. It is generated automatically along with the raster file. In most applications,

35

5 Raster Maps

the programmer need not be concerned with the history file. Occasionally a module might put
information into this file not known or readily available to the user, such as information about
a satellite image: sun angles, dates, etc. The GRASS r.info module allows the user to view this
information, and the r.support module allows the user to update it. It is the user’s responsibility
to maintain this file.

Note. GIS Library routines which read and write the raster history file are described in 12.10.3.4.1
Raster History File (p. 121).

5.7 Raster Range File Format

The range file contains the minimum and maximum values which occur in a raster file. It
is generated automatically for all new raster files. This file lives in the cell_misc element as
”cell_misc/name/range” where name is the related raster file name. It contains one line with four
integer values. These represent the minimum and maximum negative values, and the minimum
and maximum positive values in the raster file. If there are no negative values, then the first pair
of numbers will be zero. If there are no positive values, then the second pair of numbers will be
zero.

Note. GIS Library routines which read and write the raster range file are described in 12.10.4
Raster Range File (p. 122).

5.8 Raster Maps: Floating-Point / NULL support (draft, needs to
be merged into tutorial!)

FP-AUTHORS:

Michael Shapiro
Olga Waupotitsch

5.8.1 Objectives

� Provide support for floating point values in raster maps in a cpu-independent format with
little or no loss of precision.

� Provide an explicit NULL value, for both integer and floating point raster maps, that is
distinct from any number (e.g. different than zero).

5.8.2 Design decisions

This subsection describes some of the design decisions that have been made so far.

36

5.8 Raster Maps: Floating-Point / NULL support (draft, needs to be merged into tutorial!)

5.8.2.1 Floating-point maps

� Sun’s eXternal Data Representation (XDR) format and the vendor supplied XDR C-API
will be used to read and write floating point numbers to disk.

� Floating-point data will be written to a file in a new fcell directory and an empty file
created in the cell directory.

� for each operation on raster data that there will be one generic routine with 3 specific rou-
tines: G_something_raster (..., void *raster, RASTER_MAP_TYPE type, ...) G_something_c_raster
(..., CELL *cell, ...) G_something_f_raster (..., FCELL *fcell, ...) G_something_d_raster
(..., DCELL *dcell, ...) For null-related operations on raster data the functions will be:
G_something_null_value (..., void *raster, RASTER_MAP_TYPE type, ...) G_something_c_null_value
(..., CELL *cell, ...) G_something_f_null_value (..., FCELL *fcell, ...) G_something_d_null_value
(..., DCELL *dcell, ...) For null-related operations on raster data the functions will

� When programs write floating-point maps and they do not explicitly specify the storage
type, the storage type defaults to float, unless the user sets the Unix environment vari-
able GRASS_FP_DOUBLE, which changes the default to double.

� Any map can be read either as floating-point or as integer, independently of the actual
storage type, with the following rules for type conversion:

– Conversion from int to float or to double will be by C-language promotion.

– Conversion from double to float will be by C-language demotion (with subse-
quent loss of precision)

– Conversion from float or double to int will be by a flexible on-the-fly quan-
tization.

� Any map can be written using floating-point or integer buffers. Any of the C-language
number types (int, float, double) can be used to write to the raster map, but if
the type doesn’t match the resultant storage type (which is determined when the map is
opened), the following rules apply:

– Conversion from int to float or to double will be by C-language promotion.

– Conversion from double to float will be by by C-language demotion (with
subsequent loss of precision)

– Conversion from float or double to int will be by C-language truncation to
integer.

� Allow storing floating-point either as 4-byte floats or 8-byte doubles. The user
should have some control as to whether floating-point values are be written as doubles
(greater precision at higher disk use) or floats (less precision as lower disk use).

� Provide an interface to determine the storage type (int, float, double)

� Provide two methodologies for accessing NULL values when reading maps:

– Embedding the NULL value in the raster data buffers

– Reading a buffer of NULL value booleans flags.

37

5 Raster Maps

� All support functions (e.g. range, cell_stats, colors) should assume that the data has
embedded NULL values.

� The color table file is now upgraded to support floating-point ranges of values. So instead
of

cat1:red:grn:blu cat2:red:grn:blu

the format is now

value1:red:grn:blu value2:red:grn:blu

where value1 and value2 are floating-point numbers. Also now color table file can
contain entries of the form

*:red:grn:blu

default color (this sets the rgb for all values for which no explicit rgb values were defined
in the color table)

nv:red:grn:blu

(this sets color for drawing "no data" cells

� The Categories table file is now upgraded to support floating-point ranges of values for
fp maps. So instead of

cat1:description

the format is the same for integer maps, but in addition the new format for floating point
map is supported.

val1:val2:description

or

val1:description

where value1 and value2 are floating-point numbers.

� Support files needed for floating-point maps will be under the cell_misc directory:

cell_misc/<map>/f_format This ascii file contains information about the format
of the floating point data: float/double, compression, XDR indicator. For example:

type: float
byte_order: xdr
lzw_compression_bits: 9

This file is read and written using the Key_Value functions in the GISLIB. The
byte_order and lzw_compression are write-only and are for documentation (and fu-
ture upgrades). The type is one of float or double and indicates the storage type
for the floating-point values in the map.

cell_misc/<map>/f_range This binary file contains the range (minimum and max-
imum) of the floating point data written to the map.

cell_misc/<map>/f_quant This ascii file contains rules specifying how to quan-
tize the floating point values into integers. The format is, one rule per line:

38

5.8 Raster Maps: Floating-Point / NULL support (draft, needs to be merged into tutorial!)

value1:value2:cat1:cat2

where value1 and value2 are a range of floating point values, with * indicating
(positive or negative) infinity; cat1 and cat2 are a range of integer values, with cat2
optional. The rule is a linear interpolation from a floating-point value in the range
[value1,value2] to an integer in the range [cat1,cat2].

5.8.2.2 NULL-values

� The NULL values will not be written to the raster map itself; a zero will be written as a
place holder. NULL value flags will be written as a separate file under the cell_misc
directory as cell_misc/<map>/null. This file will be a bitmap with ones indicating
that the corresponding cell contains valid data, and zeros indicating that the corresponding
cell contains a NULL value.

� Internally within programs, the NULL value can either be processed as a special bit pat-
tern embedded in the raster data, or as a separate char array of flags. The bit pattern used
for integer is the largest positive integer. The bit pattern for floating point number is one
(of many) NaN bit patterns. This bit pattern will never be written to the raster data file.

� For maps which do not have a NULL bitmap file, zeros are translated to NULL when
the map is read. (NOTE: is this behaviour is not desirable, use G_get_map_row() the
old "read row" function. It reads all 0’s and nulls as 0’s) See REF description for
G_get_map_row() for more info.

� In addition to NULL values within the raster file, NULL values are be generated auto-
matically by both the MASK and the region (if the region extends beyond the extent of
the raster map).

39

5 Raster Maps

40

6 Vector Maps

This chapter provides an explanation of how vector map layers are accommodated in the GRASS
database.

6.1 What is a Vector Map Layer?

GRASS vector maps are stored in an arc-node representation, consisting of curves called arcs.
An arc is stored as a series of x,y coordinate pairs.1 The two endpoints of an arc are called
nodes. Tw o consecutive x,y pairs define an arc segment.2

The arcs, either singly, or in combination with others, form higher level map features: lines3

(e.g., roads or streams) or areas 4 (e.g., farms or forest stands). Arcs that form linear features
are sometimes called lines, and arcs that outline areas are called area edges or area lines.5

Each map feature is assigned a single integer attribute value called the category number. For
example, assume a vector file contains land cover information for a state park. One area may be
assigned category 2 (perhaps representing prairie); another is assigned category 3 (for forest);
and so on. Another vector file which contains road information may have some roads assigned
category 1 (for paved roads); other roads may be assigned category 2 (for gravel roads); etc. See
5.1 What is a Raster Map Layer? (p. 27) for more information about GRASS category values.

A vector map layer is stored in a number of data files. The files which comprise a single vector
map layer all have the same name, but each resides in a different database directory under the
mapset.6 These database directories are:

directory function
dig binary arc file

1For this reason arcs are also called vectors.
2Arc segments are sometimes called line-segments.
3A line here does not mean a straight line between two points. It only means a linear feature.
4Areas are also called polygons. The GRASS vector format does not store the polygons explicitly. They are

constructed by finding the particular arcs which form the polygon perimeter.
5Obviously, there is some confusion in the GIS vector terminology. This is partly due to use of terms that have a

common meaning as well as a mathematical meaning. Vector terminology is a subject for much debate in the
GIS world.

6Database directories are also called elements. See 4.4 Mapsets (p. 18) for a description of database elements.

41

6 Vector Maps

dig_ascii ascii arc file
dig_att vector category attribute file
dig_cats vector category labels
dig_plus vector index/pointer file
reg digitizer registration points

For example, a map layer named soils would have the files dig/soils, dig_att/soils, dig_plus/soils,
dig_ascii/soils, dig_cats/soils, reg/soils, etc.

paste vect.xfig diagram here [GRASS 5: missing since 1993]

Note. Vector files are also called digit files, since they are created and modified by the GRASS
digitizing module v.digit.

Note. When referring to one of the vector map layer files, the directory name is used. For
example, the file under the dig directory is called the dig file.

Note. Library routines which read and write vector files are described in 13 Vector Library (p.
219).

6.2 Ascii Arc File Format

The arc information is stored in a binary format in the dig file. The format of this file is reflected
in the ascii representation stored in the dig_ascii file. It is the ascii version which is described
here.7

The dig_ascii file has two sections: a header section, and a section containing the arcs.

6.2.1 Header Section

The header contains historical information, a description of the map, and its location in the uni-
verse. It consists of fourteen entries. Each entry has a label identifying the type of information,
followed by the information. The format of the header is:

label format description

7The programs v.import, v.in.ascii, and v.out.ascii convert between the ascii and binary formats.

42

6.2 Ascii Arc File Format

ORGANIZATION: text (max 29 characters)* organization that digitized the data
DIGIT DATE: text (max 19 characters)* date the data was digitized
DIGIT NAME: text (max 19 characters)* person who digitized the data
MAP NAME: text (max 40 characters)* title of the original source map
MAP DATE: text (max 10 characters)* date of the original source map
OTHER INFO: text (max 72 characters)* other comments about the map
MAP SCALE: integer scale of the original source map
ZONE: integer zone of the map (e.g., UTM zone)
WEST EDGE: real number (double) western edge of the entire map
EAST EDGE: real number (double) eastern edge of the entire map
SOUTH EDGE: real number (double) southern edge of the entire map
NORTH EDGE: real number (double) northern edge of the entire map
MAP THRESH: real number (double) digitizing resolution
VERTI: (no data) marks the end of the header section

* Currently, GRASS modules which read the header information are not tolerant of text fields
which exceed these limits. If the limits are exceeded, the ascii to binary conversion will probably
fail.

++The edges of the map describe a region which should encompass all the data in the vector
file.

+++The MAP THRESH is set by the v.digit module. If the data comes from outside GRASS,
this field can be set to 0.0.

The labels start in column 1 and continue through column 14. Labels are uppercase, left justi-
fied, end with a colon, and blank padded to column 14. The information starts in column 15.
For example:

ORGANIZATION: GRASS Development Team

DIGIT DATE: 03/18/99

DIGIT NAME: grass

MAP NAME: Urbana, IL.

MAP DATE: 1975

OTHER INFO: USGS sw/4 urbana 15’ quad. N4000-W8807.5/7.5

MAP SCALE: 24000

ZONE: 16

WEST EDGE: 383000.00

EAST EDGE: 404000.00

43

6 Vector Maps

SOUTH EDGE: 4429000.00

NORTH EDGE: 4456000.00

MAP THRESH: 0.00

VERTI:

6.2.2 Arc Section

The arc information appears in the second section of the dig_ascii file (following VERTI:
which marks the end of the header section). Each arc consists of a description entry, followed
by a series of coordinate pairs. The description specifies both the type of arc (A for area edge,
or L for line8), and the number of points (coordinate pairs) in the arc. Then the points follow.

For example:

A 5

4434456.04 388142.16

4434446.65 388202.64

4434407.49 390524.38

4434107.06 390523.59

4433326.51 390526.48

L 3

4434862.31 392043.33

4434872.42 394662.14

4434871.44 398094.75

A 3

4454747.38 396579.60

4454722.69 393539.73

4454703.68 390786.90

In this example, the first arc is an area edge and has 5 points. The second arc is part of a linear
feature and has 3 points. The third arc is another area edge and has 3 points.

8Other types may be added in the future.

44

6.3 Vector Category Attribute File

The arc description has the letter A or L in the first column, followed by at least one space, and
followed by the number of points.9

Point entries start with a space, and have at least one space between the two coordinate values.10

Note. The points are stored as y,x (i.e., north, east), which is the reverse of the way GRASS
usually represents geographic coordinates.

Note. If the v.digit module has deleted an arc, the arc type will be represented using a lower
case letter (i.e., l instead of L, a instead of A). Of course, this will only be manifest when a
binary dig file with a deleted arc is converted to the ascii dig_ascii file.

6.3 Vector Category Attribute File

As was mentioned in 6.1 What is a Vector Map Layer? (p. 41), each feature in the vector map
layer has a category number assigned to it. The category number for each map feature is not
stored in the dig file itself, but in the dig_att file. The dig_att file is an ascii file that has multiple
entries, each with the same format. Each entry refers to one map feature, and specifies the
feature type (area or line), an x,y marker, and a category number.

For example:

A 389668.32 4433900.99 7

L 395103.96 4434881.19 2

In this example, an area feature is assigned category 7, and a linear feature is assigned category
2.

The x,y marker is used to find the map feature in the dig file. It must be located so that it
uniquely identifies its related map feature. In particular, an area marker must be inside the area,
and a line marker must be closer to its related line than to any other line (preferably on the line)
and not at a node.

If multiple entries identify the same map feature, only one will be used (currently thee last
entry).

A map feature which has no entry in this file is considered to be unlabeled. This means that
during the vector to raster conversion (i.e., v.to.rast), unlabeled areas will convert as category
zero, and unlabeled lines will be ignored.

The format of this file is rather strict, and is described in the following table:

columns Data
1 Type of map feature (A or L)*

9This can be written with the Fortran format: A1,1X,I4.
10These can be written with the Fortran format: 2(1X,F12.2).

45

6 Vector Maps

2-3 Spaces
4-15 Easting (x) of the marker, right justified

16-17 Spaces
18-29 Northing (y) of the marker, right justified
30-31 Spaces
32-39 Category number, right justified
40-49 Spaces

50 Newline �

* Other types, such as point, may be allowed in the future.

� UNIX text files are terminated with a newline. Therefore, each entry will appear as 49 char-
acters. The entire file size should be a multiple of 50.

This format is required by modules which modify the vector map (e.g., v.digit). Programs which
only read the vector map accept a looser format: the feature type must start in column 1; the
items must be separated by at least one space; and the entries must be less than 50 characters.
Also, the module v.support will convert the looser format to this stricter format.

Note. The marker is specified as x,y (i.e., east, north), which is the way GRASS usually repre-
sents geographic coordinates, but which is reverse of the way the arcs are stored in the dig_ascii
file.

6.4 Vector Category Label File

Each category in the vector map layer may have a one-line description. These category labels
are stored in the dig_cats file. The format of this file is identical to the raster category file
described in 12.10.2 Raster Category File (p. 114), and the reader is referred to that section for
details.

Note. The module v.support allows the user to enter and modify the vector category labels. The
module v.to.rast copies the dig_cats file to the raster category file during the vector to raster
conversion.

Note. Library routines which read and write the dig_cats file are described under 12.12.6 Vector
Category File (p. 165).

6.5 Vector Index and Pointer File

The dig_plus file contains information that accelerates vector queries. It is created by the mod-
ule build.vect (which is run by v.digit when a vector file is created or modified, and by v.support

46

6.6 Digitizer Registration Points File

at user request) from the data in the dig and dig_att files. For this reason, and since the internal
structure of the dig_plus file is complex, the format of this file will not be described.

6.6 Digitizer Registration Points File

The reg file is an ascii file used by the v.digit module to store map registration control points.
Each map registration point has one entry with the easting and northing of the map control
point. For example:

383000.000000 4429000.000000

383000.000000 4456000.000000

404000.000000 4456000.000000

404000.000000 4429000.000000

Note. This file is used by v.digit only. It is not used by any other module in GRASS.

6.7 Vector Topology Rules

The following rules apply to the vector data:

1. Area edges should not cross each other (i.e., arcs which would cross must be split at their
intersection to form distinct arcs), otherwise topology for the map may not be build correctly.

2. Arcs which share nodes must end at exactly the same points (i.e., must be snapped together).
This is particularly important since nodes are not explicitly represented in the arc file, but only
implicitly as endpoints of arcs.

3. Common boundaries should appear only once (i.e., should not be double digitized).

4. Areas must be explicitly closed. This means that it must be possible to complete each area by
following one or more area edges that are connected by common nodes, and that such tracings
result in closed areas.

5. It is recommended that area features and linear features be placed in separate layers. However
if area features and linear features must appear in one layer, common boundaries should be
digitized only once. An area edge that is also a line (e.g., a road which is also a field boundary),
should be digitized as an area edge (i.e., arc type A) to complete the area. The area feature
should be labeled as an area (i.e., feature type A in the dig_att file). Additionally, the common
boundary arc itself (i.e., the area edge which is also a line) should be labeled as a line (i.e.,
feature type L in the dig_att file) to identify it as a linear feature.

47

6 Vector Maps

Note that planar enforcement is not present on vector library level, and both line and area edge
feature may be written to the vector so that cross themselves in the same file. To get correct
topology for area edges, required above, cleaning modules must be applied on the vector file.

6.8 Importing Vector Files Into GRASS

The following files are required or recommended for importing vector files from other systems
into GRASS:

dig_ascii

The dig_ascii file, described in 6.2 Ascii Arc File Format (p. 42), is required.

dig_att

The dig_att file, described in 6.3 Vector Category Attribute File (p. 45), is essentially required.
While the dig_ascii file alone is sufficient for simple vector display, the dig_att file is required
for vector to raster conversion, as well as more sophisticated vector query.

dig_cats

The dig_cats file, described in 6.4 Vector Category Label File (p. 46), while not required, allows
map feature descriptions to be imported as well.

Note. The dig_plus file, described in 6.5 Vector Index and Pointer File (p. 46), is created by the
GRASS module v.import when converting the dig_ascii file to the binary dig file.

48

7 Point Data: Site List Files

Chapter status: Needs further updates!

This chapter describes how point data is currently accommodated in the GRASS database.

7.1 What is a Site List?

Point data is currently stored in ascii files called site lists or site files. These files are used by the
sites modules. The site list files were designed for use by these modules, but have since become
the principal data structure for point data.

7.2 GRASS 5 Site File Format

Site files are ascii files stored under the site_lists database element.1 The format of a site file is
best explained by two examples:

name � sample

desc � sample site list

728220 � 5182440 � #27 %1.34 %23.13 @"pH 7.1"

727060 � 5181710 � #28 %2.32 %22.21 @"pH 6.8"

725500 � 5184000 � #29 %4.73 %17.34 @"pH 5.5"

719800 � 5187200 � #30 %3.65 %27.79 @"pH 6.2"

name � sample

desc � sample site list

728220 � 5182440 � 10 � #27 %1.34 %23.13 @"string 1a" @"string 2a"

728220 � 5182440 � 20 � #28 %1.52 %32.81 @"string 1b" @"string 2b"

1See 4.5.2 Elements (p. 20) for an explanation of database elements.

49

7 Point Data: Site List Files

728200 � 5182440 � 30 � #29 %0.23 %43.54 @"string 1c" @"string 2c"

717060 � 5181710 � 10 � #30 %2.32 %22.21 @"string 1d" @"string 2d"

[GRASS 5: date field!!!]

name This line contains the name of the site list file, and is printed on all the reports generated
by the s.menu module. The word name must be all lower case letters.

It is permissible for this line to be missing, since the s.menu module will add a name
record using the name of the site list file itself.

desc This line contains a description of the site list file, and is printed on all the reports gener-
ated by the s.menu module. The word desc must be all lower case letters.

It is also permissible for this line to be missing, in which case the site list will have no
description.

points The remaining lines are point records. Each site is described by a point record.

The format for this record is:2

east|north[|dim]...|#cat %double [%double] @string [@string]

or specifying a date/time record:

east|north[|dim]...|time %double [%double]

The east and north fields represent the geographic coordinates (easting and northing) of
the site.

The description field holds a single integer and is compulsory. Please read 12.13 Site List
Processing (GRASS 5 Sites API) (p. 166) for further details. The new sites format in
GRASS 5.0 allows multiple dimensions and multiple attributes with strings and decimals
support.

Examples:

name|soil
desc|
form|||%
labels|Easting|Northing|%No Label
3566177.5|5763062.5|%161.19 @clay
3566182.5|5763062.5|%161.19 @"sandy soil"
3566187.5|5763062.5|%160.53 @clay

name|time
desc|Example of using time as an attribute
time|Mon Apr 17 14:24:06 EST 1995
10.8|0|9.8|Fri Sep 13 10:00:00 1986 %31.4
11|5.5|9.9|Fri Sep 14 00:20:00 1985 %36.4
5.1|3.9|10|Fri Sep 15 00:00:30 1984 %28.4

2The pipe character (" � ") is used to separate the dimension fields in the records, blank spaces are used to separate
decimal and string descriptions.

50

7.3 Programming Interface to Site Files

This data has three dimensions (assume easting, northing, and elevation), five string at-
tributes, and one decimal attribute.

comments Blank lines, and lines beginning with #, are accepted (and ignored).

7.3 Programming Interface to Site Files

The programming interface to the site list files is described in 12.13 Site List Processing (GRASS
5 Sites API) (p. 166) and the programmer should refer to that section for details.

51

7 Point Data: Site List Files

52

8 Image Data: Groups

Chapter status: Needs further updates!

This chapter provides an explanation of how imagery data are accommodated in the GRASS
database.

8.1 Introduction

Remotely sensed images are captured for computer processing by satellite or airborne sen-
sors by filtering radiation emanating from the image into various electromagnetic wavelength
bands, converting the overall intensity for each band to digital format, and storing the values on
computer compatible media such as magnetic tape. Color and color infrared photographs are
optically scanned to convert the red, green, and blue wavelength bands in the photograph into a
digital format as well.

The digital format used by image data is basically a raster format. GRASS imagery modules1

which extract image data from magnetic tape extract the band data into raster cell files in a
GRASS database. Each band becomes a separate cell file, with standard GRASS data layer
support, and can be displayed and analyzed just like any other cell file. However, since the
band files are extracted as individual cell files, it is necessary to have a mechanism to maintain a
relationship between band files from the same image as well as cell files derived from the band
files. The GRASS group database structure accomplishes this goal.

8.2 What is a Group?

The group is a database mechanism which provides the following:

1. A list of related cell files,

2. A place to store control points for image registration and rectification, and

3. A place to store spectral signatures, image statistics, etc., which are needed by image
classification procedures.

1See 8.4 Imagery Modules (p. 58) for a list of the major GRASS imagery modules.

53

8 Image Data: Groups

8.2.1 A List of Cell Files

The essential feature of a group is that it has a list of cell files that belong in the group. These
can be band data extracted from the same data tape, or cell files derived from the original band
files.2 Therefore, the group provides a convenient "handle" for related image data; i.e., referring
to the group is equivalent to referring to all the band files at once.

8.2.2 Image Registration and Rectification

The group also provides a database mechanism for image registration and rectification. The
band data extracted from tapes are usually unregistered data. This means that the GRASS soft-
ware does not know the Earth coordinates for pixels in the image. The only coordinates known
at the time of extraction are the columns and the rows relative to the way the data was stored on
the tape.

Image registration is the process of associating Earth coordinates with pixels on the image. Im-
age rectification is the process of converting the image files to the new coordinate system based
on the registration.

Image registration is applied to a group, rather than to individual cell files. The user displays
any of the cell files in a group on the graphics monitor and then marks control points on the
image, assigning Earth coordinates to each control point. The control points are stored in the
group, allowing all related group files to be registered in one step rather than individually.

Image rectification is applied to individual cell files, with the control points for the group used
to control the rectification. The rectified cell files are placed into another database3 known as
the target database. Rectification can be applied to any or all of the cell files associated with a
group.

8.2.3 Image Classification

Image classification methods process all or a subset of the band files as a unit. For example,
a clustering algorithm generates spectral signatures which are then used by a maximum likeli-
hood classifier or other algorithm to produce a landcover map.

Sometimes only a subset of the band files are used during image classification. The signatures
must be associated only with the cell files actually used in the analysis. Therefore, within a

2Derived cell files can be the results of image classification procedures such as clustering and maximum likelihood,
or band ratios formed using r.mapcalc, etc.

3Either a projected database, such as UTM, or an unregistered database (xy), if the image is being registered to
another image.

54

8.3 The Group Structure

group, subgroups can be formed which list only the band files to be "subgrouped" for classifica-
tion purposes. The signatures are stored with the subgroup. Multiple subgroups can be created
within a group, which allows different classifications to be run with different combinations of
band files.

8.3 The Group Structure

Groups live in the GRASS database under the group database element.4 The structure of a
group can be seen in the following diagram. A trailing / indicates a directory.

group/

I

——————————————————————-

I I I I I

tm.may90/ nhap.jun98/ nhap.oct98/ tm.apr99/ ...

tm.apr99/

I

———————————————————

I I I I

REF POINTS TARGET subgroup/

In this example, the groups are named tm.may90 , nhap.jun98 , etc.5 Note that each group
is itself a directory. Each group contains some files (REF , POINTS ,and TARGET), and a
subdirectory (subgroup).

8.3.1 The REF File

The REF file contains the list of cell files associated with the group. The format is illustrated
below:

4See 4.5.2 Elements (p. 20) for an explanation of database elements.
5The group names are chosen by the user.

55

8 Image Data: Groups

tm.apr99.1 grass
tm.apr99.2 grass
tm.apr99.3 grass
tm.apr99.4 grass
tm.apr99.5 grass
tm.apr99.7 grass

Each line of this file contains the name and mapset of a cell file. In this case, there are six
cell files in the group: tm.apr99.1 , tm.apr99.2 , tm.apr99.3 , tm.apr99.4 , tm.apr99.5 and
tm.apr99.7 without thermal tm.apr99.6 in mapset grass. (Presumably these are bands 1-5 and
7 from an April 99 Landsat Thematic Mapper image.)

8.3.2 The POINTS File

The POINTS file contains the image registration control points. This file is created and modified
by the i.points module. Its format is illustrated below:

image target status
east north East north (1=ok)

#
504.00 -2705.00 379145.30 4448504.56 1
458.00 -2713.00 378272.67 4448511.67 1

2285.80 -2296.00 415610.08 4450456.17 1
2397.00 -2564.00 417043.22 4444757.65 0
2158.00 -2944.00 411037.79 4438210.97 1
2148.00 -2913.00 410834.61 4438656.18 0
2288.80 -2336.20 415497.19 4449671.77 1

The lines which begin with # are comment lines. The first two columns of data (under image)
are the column (i.e., east) and row (i.e., north6) of the registration control points as marked on
the image. The next two columns (under target) are the east and north of the marked points in
the target database coordinate system (in this case, a UTM database). The last column (under
status) indicates whether or not the control point is well placed.7 (If it is ok, then it will be used
as a valid registration point. Otherwise, it is simply retained in the file, but not used.)

6Note that the row values are negative. This is because GRASS requires the northings to increase from south to
north. Negative values accomplish this while preserving the row value. The true image row is the absolute value.
[GRASS 5: ?????????]

7The user makes this decision in i.points.

56

8.3 The Group Structure

8.3.3 The TARGET File

The TARGET file contains the name of the target database; i.e., the GRASS database mapset
into which rectified cell files will be created. The TARGET file is written by i.target and has
two lines:

spearfish
grass

The first line is the GRASS location (in this case spearfish), and the second is a mapset within
the location (in this case grass).

8.3.4 Subgroups

The subgroup directory under a group has the following structure:

subgroup/

I

—————————————————-

I I I I

123/ 234/ 1357/ ...

1357/

I

—————–

I I

REF sig/

I

—————–

I I

cluster.1 cluster.2

57

8 Image Data: Groups

In this example, the subgroups are named 123, 234, 1357, etc.8 Within each subgroup, there is
a REF file and a sig directory. The REF file would list a subset of the cell files from the group.
In this example, it could look like:

tm.apr99.1 grass
tm.apr99.3 grass
tm.apr99.5 grass
tm.apr99.7 grass

indicating that the subgroup is composed of bands 1, 3, 5, and 7 from the April 1999 TM scene.
The files cluster.1 and cluster.2 9 under the sig directory contain spectral signature information
(i.e., statistics) for this combination of band files. The files were generated by different runs of
the clustering module i.cluster.

8.4 Imagery Modules

The following is a list of some of the imagery modules in GRASS, with a brief description of
what they do. Refer to the GRASS 5 User’s Reference Manual for more details.

image extraction

i.tape.mss Landsat Multispectral Scanner data

i.tape.tm Landsat Thematic Mapper data

i.tape.spot SPOT Satellite data

i.tape.other other formats, such as scanned aerial photography or SPOT satellite data

i.in.pri ERS1/2 CEOS RADAR reader for PRI products

i.in.gtc ERS1/2 CEOS RADAR reader for GTC products

image rectification

i.ortho.photo ortho photo generation

i.points image registration (assign control points) to raster reference

i.vpoints image registration (assign control points) to vector reference

i.rectify image rectification (linear)

i.rectify2 image rectification (polynomial)

8The subgroup names are chosen by the user (hopefully reflecting the contents of the subgroup).
9Again, these file names are chosen by the user.

58

8.5 Programming Interface for Groups

image classification

i.cluster unsupervised clustering

i.maxlik maximum likelihood classifier

i.smap sequential maximum a posteriori classifier

other

i.group image group management

i.target establish target database for the group

8.5 Programming Interface for Groups

The programming interface to the group data is described in 14 Imagery Library (p. 233) and
the reader is referred to that chapter for details.

59

8 Image Data: Groups

60

9 Region and Mask

Chapter status: Needs further updates!

GRASS users are provided with two mechanisms for specifying the area of the earth in which to
view and analyze their data. These are known in GRASS as the region and the mask. The user is
allowed to set a region which defines a rectangular area of coverage on the earth, and optionally
further limit the coverage by specifying a "cookie cutter" mask. The region and mask are stored
in the database under the user’s current mapset. GRASS modules automatically retrieve only
data that fall within the region. Furthermore, if there is a mask, only data that fall within the
mask are retained. modules determine the region and mask from the database rather than asking
the user.

9.1 Region

The user’s current database region is set by the user using the GRASS g.region, or d.zoom com-
mands. It is stored in the WIND file in the mapset. This file not only specifies the geographic
boundaries of the region rectangle, but also the region resolution which implicitly grids the re-
gion into rectangular "cells" of equal dimension.

Users expect map layers to be resampled into the current region. This implies that raster maps
must be extended with no data for portions of the region which do not cover the map layer,
and that the raster map data be resampled to the region resolution if the raster map resolution is
different. Users also expect new map layers to be created with exactly the same boundaries and
resolution as the current region.

The WIND file contains the following fields:

WIND

61

9 Region and Mask

north: 4660000.00
south: 4570000.00
east : 770000.00
west : 710000.00
e-w resol: 50.00
n-s resol: 100.00
rows: 900
cols: 1200
proj: 1
zone: 18

north, south, east, west

The geographic boundaries of the region are given by the north, south, east, and west
fields. Note: these values describe the lines which bound the region at its edges. These
lines do NOT pass through the center of the grid cells which form the region edge, but
rather along the edge of the region itself.

rows, cols

These values describe the number of rows and columns in the region.

e-w resol, n-s resol

The fields e-w resol and n-s resol (which stand for east-west resolution and north-south
resolution respectively) describe the size of each grid cell in the region in physical mea-
surement units (e.g., meters in a UTM database). The e-w resol is the length of a grid cell
from east to west. The n-s resol is the length of a grid cell from north to south. Note that
since the e-w resol may differ from the n-s resol, region grid cells need not be square.

proj, zone

The projection field specifies the type of cartographic projection: 0 is unreferenced x,y
(imagery data), 1 is UTM, 2 is State Plane,1 3 is Latitude Longitude.2 Others may be
added in the future. The zone field is the projection zone. In the example above, the
projection is UTM, the zone 18.

Note. The format for the region file "WIND" is very similar to the format for the raster header
files. See 5.3 Raster Header Format (p. 29) for details about raster header files.

1 State Plane is not yet fully supported in GRASS.
2Latitude Longitude is a nonplanimetric projection and is only partially supported in GRASS.

62

9.2 Mask

9.2 Mask

[GRASS 5] Note: Floating point masks are not supported...

In addition to the region, the user may set a mask using the r.mask command. The mask is
stored in the user’s current mapset as a raster file with the name MASK.3 The mask acts like
an opaque filter when reading other raster files. No-data values in the mask (i.e., category zero)
will cause corresponding values in other raster files to be read as no data (irrespective of the
actual value in the raster file).

The following diagram gives a visual idea of how the mask works:

input MASK output
3 4 4 0 1 1 0 4 4
3 3 4 + 1 1 0 = 3 3 0
2 3 3 1 0 0 2 0 0

9.3 Variations

If a GRASS module does not obey either the region or the mask, the variation must be noted in
the user documentation for the module, and the reason for the variation given.

3The r.mask module creates MASK as a reclass file because the reclass function is fast and uses less disk space,
but it does not actually matter that MASK is a reclass file. A regular raster file can be used. The only thing that
really matters is that the raster file be called MASK.

63

9 Region and Mask

64

10 Environment Variables

Chapter status: Needs further updates!

GRASS modules are written to be independent of which database the user is using, where the
database resides on the disk, or where the modules themselves reside. When modules need this
information, they get some of it from UNIX environment variables, and the rest from GRASS
environment variables.

10.1 UNIX Environment

The GRASS start-up command grass5.0 sets the following UNIX environment variables:1

GISBASE top level directory for the GRASS modules

GIS_LOCK process id of the start-up shell script

GISRC name of the GRASS environment file

GISBASE is the top level directory for the GRASS programs. For example, if GRASS were
installed under /opt/grass, then GISBASE would be set to /opt/grass. The command directory
would be /opt/grass/bin, the command support directory would be /opt/grass/etc, the source
code directory would be /opt/grass/src, the on-line manual would live in /opt/grass/man, etc.

GISBASE, while set in the UNIX environment, is given special handling in GRASS code. This
variable must be accessed using the GIS Library routine G_gisbase.

GIS_LOCK is used for various locking mechanisms in GRASS. It is set to the process id of
the start-up shell so that locking mechanisms can detect orphaned locks (e.g., locks that were
left behind during a system crash).

1Any interface to GRASS must set these variables.

65

10 Environment Variables

GIS_LOCK may be accessed using the UNIX getenv() routine.

GISRC is set to the name of the GRASS environment file where all other GRASS variables are
stored. This file is .grassrc5 in the user’s home directory.

10.2 GRASS Environment

All GRASS users will have a file in their home directory named .grassrc52 which is used to
store the variables that comprise the environment of all GRASS programs. This file will always
include the following variables that define the database in which the user is working:

GISDBASE toplevel database directory

LOCATION_NAME location directory

MAPSET mapset directory

The user sets these variables during GRASS start-up. While the value of GISDBASE will be
relatively constant, the others may change each time the user runs GRASS. GRASS modules
access these variables using the G_gisdbase, G_location, and G_mapset routines in the GIS
Library. See 4.2 GISDBASE (p. 17) for details about GISDBASE, 4.3 Locations (p. 18) for
details about database locations, and 4.4 Mapsets (p. 18) for details about mapsets.

Other variables may appear in this file. Some of these are:

MONITOR currently selected graphics monitor

PAINTER currently selected paint output device

DIGITIZER currently selected digitizer

These variables are accessed and set from C programs using the general purpose routines
G_getenv and G_setenv. The GRASS module g.gisenv provides a command level interface
to these variables.

2GRASS modules do not have this file name built into them. They look it up from the UNIX environment variable
GISRC. Note the similarity in naming convention to the .cshrc and .exrc files.

66

10.3 Difference Between GRASS and UNIX Environments

10.3 Difference Between GRASS and UNIX Environments

The GRASS environment is similar to the UNIX environment in that modules can access infor-
mation stored in "environment" variables. However, since the GRASS environment variables
are stored in a disk file, it offers two capabilities not available with UNIX environment vari-
ables. First, variables may be set by one module for later use by other programs. For example,
the GRASS start-up sets these variables for use by all other GRASS application programs. Sec-
ond, since the variables remain in the file unless explicitly removed, they are available from
session to session. Also, several GRASS environment variables are used as defaults each time
a GRASS session is initiated.

67

10 Environment Variables

68

11 Compiling and Installing GRASS Modules

GRASS modules are compiled and installed using the GRASS gmake5 front-end to the UNIX
make command: gmake5 reads a file named Gmakefile to construct a make.rules file (see 11.4.1
Multiple-Architecture Conventions (p. 75) for more information,) and then runs make. The
GRASS compilation process allows for multiple-architecture compilation from a single copy
of the source code (for instance, if the source code is NFS mounted to various machines with
differing architectures.) This chapter assumes that the programmer is familiar with make and
its accompanying makefiles.

Explain ”auto-conf”....

To compile enter following:

./configure
make install

Then the code will be compiled into "/usr/local/grass-5.0b" directory. The start script "grass5.0beta"
and the module compilation scripts "gmake5" and "gmakelinks5" will be placed into "/usr/local/bin".

Optionally other target directories can be specified while "configuring":

./configure --prefix=/opt/grass5.0 --with-bindir=/usr/bin
make install

This will store the GRASS binaries into the directory "/opt/grass5.0" and the script mentioned
above into "/usr/bin".

The script "gmake5" is required to compile single modules, the user has to run "gmakelinks5"
afterwards to set internal links for this new module. The compilation process and requirements
are discussed in more detail now.

11.1 gmake5

The GRASS gmake5 utility allows make compilation rules to be developed without having to
specify machine and installation dependent information. gmake5 combines predefined variables
that specify the machine and installation dependent information with the Gmakefile, to create a

69

11 Compiling and Installing GRASS Modules

makefile. (The predefined variables and the construction of a Gmakefile are described in 11.2
Gmakefile Variables (p. 70)).

gmake5 is invoked as follows:1

gmake5 [source directory] [target]

If run without arguments, gmake5 will run in the current directory, build a makefile from the
Gmakefile found there, and then run make. If run with a source directory argument, gmake5 will
change into this directory and then proceed as above. If run with a target argument as well, then
make will be run on the specified target.

11.2 Gmakefile Variables

The predefined Gmakefile variables which the GRASS programmer must use when writing a
Gmakefile specify libraries, source and binary directories, compiler and loader flags, etc. The
most commonly used variables will be defined here. Examples of how to use them follow in
11.3 Constructing a Gmakefile (p. 72). The full set of variables can be seen in A.1 Appendix
A: Annotated Gmakefile Predefined Variables (p. 433). Variables marked with (-) are not com-
monly used.

GRASS Directories: The following variables tell gmake5 where source code and module di-
rectories are:

SRC (-) This is the directory where GRASS source code lives.

BIN This is the directory where user-accessible GRASS modules live.

ETC This is the directory where support files and modules live. These support files and modules
are used by the $(BIN) programs, and are not known to, or run by the user.

LIBDIR (-) This is the directory where most of the GRASS libraries are kept.

INCLUDE_DIR (-) This is where include and header files live. For example, ”gis.h” can be
found here. gmake5 automatically specifies this directory to the C compiler as a place to find
include files.

GRASS Libraries. The following variables name the various GRASS libraries:

GISLIB This names the GIS Library, which is the principal GRASS library. See 12 GIS Library
(p. 79) for details about this library, and 12.22 Loading the GIS Library (p. 214) for a sample
Gmakefile which loads this library.

VASKLIB This names the Vask Library, which does full screen user input.
1When GRASS is installed, gmake5 is placed into a directory which is in your $PATH (e.g. /usr/local/bin). You

should be able to run gmake5 without having to specify its full path name. This path can be defined differently
with parameter to "configure".

70

11.2 Gmakefile Variables

VASK This specifies the Vask Library plus the UNIX curses and termcap libraries needed to use
the Vask Library routines. See 20 Vask Library (p. 283) for details about this library, and 20.4
Loading the Vask Library (p. 287) for a sample Gmakefile which loads this library.

SEGMENTLIB This names the Segment Library, which manages large matrix data. See 19
Segment Library (p. 277) for details about this library, and 20.4 Loading the Vask Library (p.
287) for a sample Gmakefile which loads this library.

RASTERLIB This names the Raster Graphics Library, which communicates with GRASS
graphics drivers. See 15 Raster Graphics Library (p. 243) for details about this library, and
15.10 Loading the Raster Graphics Library (p. 253) for a sample Gmakefile which loads this
library.

DISPLAYLIB This names the Display Graphics Library, which provides a higher level graphics
interface to $(RASTERLIB). See 16 Display Graphics Library (p. 255) for details about this
library, and 16.10 Loading the Display Graphics Library (p. 267) for a sample Gmakefile which
loads this library.

UNIX Libraries: The following variables name some useful UNIX system libraries:

MATHLIB This names the math library. It should be used instead of the -lm loader option.

CURSES This names both the curses and termcap libraries. It should be used instead of the
-lcurses/-lncurses and -ltermcap loader options. Do not use $(CURSES) if you use $(VASK).

TERMLIB This names the termcap library. It should be used instead of the -ltermcap or -
ltermlib loader options. Do not use $(TERMLIB) if you use $(VASK) or $(CURSES).

Compiler and loader variables. The following variables are related to compiling and loading
C programs:

CC This variable specifies what compiler/loader to use. This should always be referenced, as
opposed to ”cc”. See 11.3.1 Building modules from source (.c) files (p. 72) for the proper use
of the CC variable.

AR This variable specifies the rule that must be used to build object libraries. See 11.3.3
Building object libraries (p. 74) for details.

CFLAGS (-) This variable specifies all the C compiler options. It should never be necessary to
use this variable - gmake5 automatically supplies this variable to the C compiler.

EXTRA_CFLAGS This variable can be used to add additional options to $(CFLAGS). It has
no predefined values. It is usually used to specify additional -I include directories, or -D pre-
processor defines.

GMAKE This is the full name of the gmake5 command. It can be used to drive compilation in
subdirectories.

71

11 Compiling and Installing GRASS Modules

LDFLAGS This specifies the loader flags. The programmer must use this variable when loading
GRASS modules since there is no way to automatically supply these flags to the loader.

MAKEALL This defines a command which runs gmake5 in all subdirectories that have a
Gmakefile in them.

11.3 Constructing a Gmakefile

A Gmakefile is constructed like a makefile. The complete syntax for a makefile is discussed in the
UNIX documentation for make and will not be repeated here. The essential idea is that a target
(e.g. a GRASS module) is to be built from a list of dependencies (e.g. object files, libraries,
etc.). The relationship between the target, its dependencies, and the rules for constructing the
target is expressed according to the following syntax:

target : dependencies

actions

more actions

If the target does not exist, or if any of the dependencies have a newer date than the target (i.e.,
have changed), the actions will be executed to build the target. The actions must be indented
using a TAB. Make is picky about this. It does not like spaces in place of the TAB.

11.3.1 Building modules from source (.c) files

To build a module from C source code files, it is only necessary to specify the compiled object
(.o) files as dependencies for the target module, and then specify an action to load the object
files together to form the module. The make utility builds .o files from .c files without being
instructed to do so.

For example, the following Gmakefile builds the module xyz and puts it in the GRASS module
directory.

OBJ = main.o sub1.o sub2.o sub3.o

$(BIN)/xyz: $(OBJ) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB) $(XDRLIB)

$(GISLIB): # in case of library changes

The target xyz depends on the object files listed in the variable $(OBJ), the $(GISLIB) and the
$(XDRLIB) library. The action runs the C compiler to load xyz from the $(OBJ) files, the
$(GISLIB) and the $(XDRLIB).

72

11.3 Constructing a Gmakefile

$@ is a make shorthand which stands for the target, in this case xyz. Its use should be encour-
aged, since the target name can be changed without having to edit the action as well.

$(CC) is the C compiler. It is used as the interface to the loader. It should be specified as $(CC)
instead of cc. Make may define $(CC) as cc, but using $(CC) will allow other C-like compilers
to be used instead.

$(BIN) is a gmake5 variable which names the UNIX directory where GRASS commands live.
Specifying the target as $(BIN)/xyz will cause gmake5 to build xyz directly into the $(BIN)
directory.

$(LDFLAGS) specify loader flags which must be passed to the loader in this manner.

$(GISLIB) is the GIS Library. $(GISLIB) is specified on the action line so that it is included
during the load step. It is also specified in the dependency list so that changes in $(GISLIB)
will also cause the module to be reloaded. Note that no rules were given for building the .o files
from their related .c files. In fact, the GRASS programmer should never giv e an explicit rule
for compiling .c files. It is sufficient to list all the .o files as dependencies of the target. The .c
files will be automatically compiled to build up-to-date .o files before the .o files are loaded to
build the target module.

Also note that since $(GISLIB) is specified as a dependency it must also be specified as a target.
Make must be told how to build all dependencies as well as targets. In this case a dummy rule
is given to satisfy make.

11.3.2 Include files

Often C code uses the # include directive to include header files in the source during compila-
tion. Header files that are included into C source code should be specified as dependencies as
well. It is the .o files which depend on them:

OBJ = main.o sub1.o sub2.o

$(BIN)/xyz: $(OBJ) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB)

$(OBJ): myheader.h

$(GISLIB): # in case library changes

In this case, it is assumed that ”myheader.h” lives in the current directory and is included in
each source code file. If ”myheader.h” changes, then all .c files will be compiled even though
they may not have changed. And then the target module xyz will be reloaded.

If the header file ”myheader.h” is in a different directory, then a different formulation can be
used:

73

11 Compiling and Installing GRASS Modules

EXTRA_CFLAGS = -I..

OBJ = main.o sub1.o sub2.o

$(BIN)/xyz: $(OBJ) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB) $(XDRLIB)

$(GISLIB): # in case of library changes

$(EXTRA_CFLAGS) will add the flag -I.. to the rules that compile .c files into .o files. This flag
indicates that #include files (i.e., ”myheader.h”) can also be found in the parent (..) directory.

Note that this example does not specify that ”myheader.h” is a dependency. If ”myheader.h”
were to change, this would not cause recompilation here. The following rule could be added:

$(OBJ): ../myheader.h

11.3.3 Building object libraries

Sometimes it is desirable to build libraries of subroutines which can be used in many programs.
gmake5 requires that these libraries be built using the $(AR) rule as follows:

OBJ = sub1.o sub2.o sub3.o

lib.a: $(OBJ)

$(AR)

All the object files listed in $(OBJ) will be compiled and archived into the target library lib.a.
The $(OBJ) variable must be used. The $(AR) assumes that all object files are listed in $(OBJ).

Note that due to the way the $(AR) rule is designed, it is not possible to construct more than one
library in a single source code directory. Each library must have its own directory and related
Gmakefile.

11.3.4 Building more than one target

Many target : dependency lines many be giv en. However, it is the first one in the Gmakefile
which is built by gmake5. If there are more targets to be built, the first target must explicitly or
implicitly cause gmake5 to build the others.

The following builds two programs, abc and xyz directly into the $(BIN) directory:

74

11.4 Compilation Results

ABC = abc.o sub1.o sub2.o

XYZ = xyz.o sub1.o sub3.o

all: $(BIN)/abc $(BIN)/xyz

$(BIN)/abc: $(ABC) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(ABC) $(GISLIB) $(XDRLIB)

$(BIN)/xyz: $(XYZ) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(XYZ) $(GISLIB) $(XDRLIB)

$(GISLIB): # in case library changes

If it is desired to run the compilation in various subdirectories, a Gmakefile could be constructed
which simply runs gmake5 in each subdirectory. For example:

all:

$(GMAKE) subdir.1

$(GMAKE) subdir.2

$(GMAKE) subdir.3

11.4 Compilation Results

This section describes the results of the GRASS compilation process for two separate subjects.

11.4.1 Multiple-Architecture Conventions

The following conventions allow for multiple architecture compilation on a machine that uses a
common or networked GRASS source code directory tree.

Object files and library archives are compiled into subdirectories that represent the architec-
ture that they were compiled on. These subdirectories are created in the $(SRC) directory as
OBJ.arch and LIB.arch, where arch represents the architecture of the compiling machine. Thus,
for example, $(SRC)/OBJ.sun4 would contain the object files for Sun/4 and SPARC architec-
tures, and $(SRC)/LIB.Linux would contain library archives for Linux architectures. Likewise,
$(SRC)/OBJ.Linux would contain the object files for Linux architectures, and $(SRC)/LIB.Linux
would contain library archives for Linux architectures.

Note that ’arch’ is defined for a specific architecture during setup and compilation of GRASS,
it is not limited to sun4 or any specific string.

75

11 Compiling and Installing GRASS Modules

gmake5 produces a make.rules file in the $(SRC)/OBJ.arch directory instead of a makefile to
allow for multiple-architecture compilation.

11.4.2 Compiled Command Destinations

GRASS V.5 merges the command-line and interactive versions of a function under the same
name. This merging happens in one of two methods:

1. The programmer writes a single module which uses the new parser capability (see 12.16
Command Line Parsing (p. 186)). The parser has both a command-line and a rudimentary
prompt-based interactive interface.

2. The programmer writes a command-line version using the parser, but also provides an inter-
active version as a separate module to override the parser’s interactive interface.

The second method requires that both the command-line module and the interactive module be
somehow merged into one module. This is accomplished by placing both modules in separate
directories under $(GISBASE)/etc/bin and creating a link (as described below) in $(BIN).

There are six directories where modules are placed. These, along with their respective Gmake-
file variables, are:

etc/bin/main/inter $(BIN_INTER)

Interactive versions of the primary GRASS commands.

etc/bin/main/cmd $(BIN_CMD)

Command-line versions of the primary GRASS commands.

To merge the command-line and interactive versions of a command, the compilation process
creates a link in $(BIN) to $(GISBASE)/etc/front.end. This link has the same name as the
command, and causes execution of the command to be passed to a front-end. The behavior of
the front.end command is shown in the figure below using the command r.reclass as an example.

paste front.end.xfig diagram here (not existing.. 2/2000)

The front.end module will call the interactive version of the command if there were no command-
line arguments entered by the user. Otherwise, it will run the command-line version. If only
one version of the specific command exists (for example, there is only a command-line version
available,) that one existing command is executed.

76

11.5 Notes

11.5 Notes

11.5.1 Bypassing the creation of .o files

If a module has only one .c source file, it is tempting to compile the module directly from the
.c file without creating the .o file. Please do not do this. There have been problems on some
systems specifying both compiler and loader flags at the same time. The .o files must be built
first. Once all the .o files are built, they are loaded with any required libraries to build the
module.

11.5.2 Simultaneous compilation

The compilation process may be run on only one machine at a time. If you try to compile the
same source directory on two machines simultaneously, things will not turn out properly. This
is your responsibility–gmake5 cannot detect simultaneous compilations.

77

11 Compiling and Installing GRASS Modules

78

12 GIS Library

12.1 Introduction to GIS Library

The GIS Library is the primary programming library provided with the GRASS system. Pro-
grams must use this libary to access the database. It contains the routines which locate,
create, open, rename, and remove GRASS database files. It contains the routines which read
and write raster files. It contains routines which interface the user to the database, including
prompting the user, listing available files, validating user access, etc. It also has some general
purpose routines (string manipulation, user information, etc.) which are not tied directly to
database processing.

It is assumed that the reader has read 4 Database Structure (p. 17) for a general description
of GRASS databases, 5 Raster Maps (p. 27) for details about raster map layers in GRASS,
and 9 Region and Mask (p. 61) which discusses regions and masks. The routines in the GIS
Library are presented in functional groupings, rather than in alphabetical order. The order of
presentation will, it is hoped, provide a better understanding of how the library is to be used,
as well as show the interrelationships among the various routines. Note that a good way to
understand how to use these routines is to look at the source code for GRASS modules which
use them. Most routines in this library require that the header file "gis.h" be included in any code
using these routines.1 Therefore, programmers should always include this file when writing
code using routines from this library:

#include "gis.h"

Note. All routines and global variables in this library, documented or undocumented, start with
the prefix G_. To avoid name conflicts, programmers should not create variables or routines in
their own modules which use this prefix.

An alphabetic index is provided in A.3 Appendix C: Index to GIS Library (p. 438).

12.2 Library Initialization

It is mandatory that the system be initialized before any other library routines are called.

1The GRASS compilation process, described in 11 Compiling and Installing GRASS Modules (p. 69), automati-
cally tells the C compiler how to find this and other GRASS header files.

79

12 GIS Library

intinitialize gis
library G_gisinit (char *program_name)

This routine reads the user’s GRASS environment file into memory and makes sure
that the user has selected a valid database and mapset. It also initializes hidden
variables used by other routines. If the user’s database information is invalid, an
error message is printed and the module exits. The program_name is stored for
later recall by G_program_name. It is recommended that argv[0] be used for the
program_name:

int main (int argc, char **argv)
{
G_gisinit(argv[0]);
}

12.3 Diagnostic Messages

The following routines are used by other routines in the library to report warning and error
messages. They may also be used directly by GRASS programs.

intprint error
message and

exit
G_fatal_error (char *message, ...)

intprint warning
message and

continue
G_warning (char *message, ...)

These routines report errors to the user. The normal mode is to write the message
to the screen (on the standard error output) and wait a few seconds. G_warning()
will return and G_fatal_error() will exit.
If the standard error output is not a tty device, then the message is mailed to the
user instead.
If the file GIS_ERROR_LOG exists (with write permission), in either the user’s
home directory or in the $GISBASE2 directory, the messages will also be logged
to this file.

While most applications will find the normal error reporting quite adequate, there will be times
when different handling is needed. For example, graphics modules may want the messages
displayed graphically instead of on the standard error output. If the programmer wants to handle
the error messages differently, the following routines can be used to modify the error handling:

intchange error
handling 2$GISBASE is the directory where GRASS is installed. See 10.1 UNIX Environment (p. 65) for details.

80

12.4 Environment and Database Information

G_set_error_routine (int (*handler)())

This routine provides a different error handler for G_fatal_error() and
G_warning(). The handler routine must be defined as follows:

int handler (char *message, int fatal)

where message is the message to be handled and fatal indicates the type of error:
1 (fatal error) or 0 (warning).
Note. The handler only provides a way to send the message somewhere other than
to the error output. If the error is fatal, the module will exit after the handler returns.

int reset normal
error handlingG_unset_error_routine (void)

This routine resets the error handling for G_fatal_error and G_warning back to the
default action.

int sleep on error?
G_sleep_on_error (int flag)

If flag is 0, then no pause will occur after printing an error or warning message.
Otherwise the pause will occur.

int suppress
warnings?G_suppress_warnings (int flag)

If flag is 0, then G_warning will no longer print warning messages. If flag is 1,
then G_warning() will print warning messages.

Note. This routine has no effect on G_fatal_error.

12.4 Environment and Database Information

The following routines return information about the current database selected by the user. Some
of this information is retrieved from the user’s GRASS environment file. Some of it comes from
files in the database itself. See 10 Environment Variables (p. 65) for a discussion of the GRASS
environment.

The following four routines can be used freely by the programmer:

81

12 GIS Library

char * current location
nameG_location (void)

Returns the name of the current database location. This routine should be used by
modules that need to display the current location to the user. See 4.3 Locations (p.
18) for an explanation of locations.

char *current mapset
name G_mapset (void)

Returns the name of the current mapset in the current location. This routine is
often used when accessing files in the current mapset. See 4.4 Mapsets (p. 18) for
an explanation of mapsets.

char *location title
G_myname (void)

Returns a one line title for the database location. This title is read from the file
MYNAME in the PERMANENT mapset. See also 4.6 Permanent Mapset (p. 21)
for a discussion of the PERMANENT mapset.

char *top level
module

directory
G_gisbase (void)

Returns the full path name of the top level directory for GRASS programs. This
directory will have subdirectories which will contain modules and files required for
the running of the system. Some of these directories are:

bin commands run by the user
etc modules and data files used by GRASS

commands
txt help files
menu files used by the grass3 menu interface

The use of G_gisbase() to find these subdirectories enables GRASS modules to
be written independently of where the GRASS system is actually installed on the
machine. For example, to run the module sroff in the GRASS etc directory:

char command[200];

sprintf (command, "%s/etc/sroff", G_gisbase());
system (command);

82

12.4 Environment and Database Information

The following two routines return full path UNIX directory names. They should be used only
in special cases. They are used by other routines in the library to build full UNIX file names for
database files. The programmer should not use the next two routines to bypass the normal
database access routines.

char * top level
database
directory

G_gisdbase (void)

Returns the full UNIX path name of the directory which holds the database loca-
tions. See 4.2 GISDBASE (p. 17) for a full explanation of this directory.

char * current location
directoryG_location_path (void)

Returns the full UNIX path name of the current database location. For example, if
the user is working in location spearfish in the /usr/grass5/data database directory,
this routine will return a string which looks like
/home/user/grassdata/spearfish.

These next routines provide the low-level management of the information in the user’s GRASS
environment file. They should not be used in place of the higher level interface routines
described above.

int query GRASS
environment
variable

G_getenv (char *name)

int query GRASS
environment
variable

G_ _getenv (char *name)

These routines look up the variable name in the GRASS environment and return its
value (which is a character string). If name is not set, G_getenv() issues an error
message and calls exit(). G_ _setenv() just returns the NULL pointer.

int set GRASS
environment
variable

G_setenv (char *name, char *value)

int set GRASS
environment
variable

G_ _setenv (char *name, char *value)

83

12 GIS Library

These routines set the the GRASS environment variable name to value. If value
is NULL, the name is unset.

Both routines set the value in module memory, but only G_setenv() writes the new value to the
user’s GRASS environment file.

12.5 Fundamental Database Access Routines

The routines described in this section provide the low-level interface to the GRASS database.
They search the database for files, prompt the user for file names, open files for reading or writ-
ing, etc. The programmer should never bypass this level of database interface. These routines
must be used to access the GRASS database unless there are other higher level library rou-
tines which perform the same function. For example, routines to process raster files (12.9
Raster File Processing (p. 105)), vector files (12.12 Vector File Processing (p. 161)), or site
files (12.13 Site List Processing (GRASS 5 Sites API) (p. 166)), etc., should be used instead.

In the descriptions below, the term database element is used. Elements are subdirectories within
a mapset and are associated with a specific GRASS data type. For example, raster files live in
the "cell" and "fcell" element. See 4.5.2 Elements (p. 20) for more details.

12.5.1 Prompting for Database Files

The following routines interactively prompt the user for a file name from a specific database
element. (See 4.5.2 Elements (p. 20) for an explanation of elements.) In each, the prompt
string will be printed as the first line of the full prompt which asks the user to enter a file name.
If prompt is the empty string "" then an appropriate prompt will be substituted. The name that
the user enters is copied into the name buffer.3 The short (one or two word) label describing
the element is used as part of a title when listing the files in element.

The user is required to enter a valid file name, or else hit the RETURN key to cancel the request.
If the user enters an invalid response, a message is printed, and the user is prompted again. If
the user cancels the request, the NULL pointer is returned. Otherwise the mapset where the file
lives or is to be created is returned. Both the name and the mapset are used in other routines to
refer to the file.

An example will be given here. The G_ask_old() routine used in the example is described a bit
later. The user is asked to enter a file from the "paint/labels" element:

char name[50];
char *mapset;
mapset = G_ask_old ("", name, "paint/labels", "labels");
if (mapset = = NULL)
exit(0); /* user canceled the request */

3The size of name should be large enough to hold any GRASS file name. Most systems allow file names to be
quite long. It is recommended that name be declared char name[50].

84

12.5 Fundamental Database Access Routines

The user will see the following:

Enter the name of an existing labels file
Enter ’list’ for a list of existing labels files
Hit RETURN to cancel request 4

>

char * prompt for
existing
database file

G_ask_old (char *prompt, char *name, char *element, char *label)

The user is asked to enter the name of an existing database file.
Note. This routine looks for the file in the current mapset as well as other mapsets.
The mapsets that are searched are determined from the user’s mapset search path.
See 4.7.1 Mapset Search Path (p. 22) for some more details about the search path.

char * prompt for new
database fileG_ask_new (char *prompt, char *name, char *element, char *label)

The user is asked to enter the name of a new file which does not exist in the current
mapset.
Note. The file chosen by the user may exist in other mapsets. This routine does not
look in other mapsets, since the assumption is that name will be used to create a
new file. New files are always created in the current mapset.

char * prompt for
existing
database file

G_ask_in_mapset (char *prompt, char *name, char *element, char *label)

The user is asked to enter the name of an file which exists in the current mapset.
Note. The file chosen by the user may or may not exist in other mapsets. This
routine does not look in other mapsets, since the assumption is that name will be
used to modify a file. GRASS only permits users to modify files in the current
mapset.

char * prompt for any
valid file nameG_ask_any (char *prompt, char *name, char *element, char *label, int warn)

4This line of the prompt can be modified using G_set_ask_return_msg.

85

12 GIS Library

The user is asked to enter any leg al file name. If warn is 1 and the file chosen
exists in the current mapset, then the user is asked if it is ok to overwrite the file. If
warn is 0, then any leg al name is accepted and no warning is issued to the user if
the file exists.

intset Hit
RETURN msg G_set_ask_return_msg (char *msg)

The "Hit RETURN to cancel request" part of the prompt in the prompting routines
described above, is modified to "Hit RETURN msg."

char *get Hit
RETURN msg G_get_ask_return_msg (void)

The current msg (as set by G_set_ask_return_msg) is returned.

12.5.2 Fully Qualified File Names

All GRASS routines which access database files must be given both the file name and the mapset
where the file resides. Often the name and the mapset are 2 distinct character strings. However,
there is a need for a single character string which contains both the name and the mapset (e.g.,
for interactive interfacing to command-line programs). This form of the name is known as the
fully qualified file name and is built by the following routine:

char *fully qualified
file name G_fully_qualified_name (char *name, char *mapset)

Returns a fully qualified name for the file name in mapset. Currently this string
is in the form name@mapset, but the programmer should pretend not to know this
and always call this routine to get the fully qualified name.
The following example shows how an interactive version of d.rast interfaces with
the command-line version of d.rast:

#include "gis.h"
int main(char *argc, char **argv)
{
char name[100], *mapset, *fqn;;
char command[1024];
G_gisinit(argv[0]);
mapset = G_ask_cell_old ("", name, "");
if (mapset = = NULL) exit(0);
fqn = G_fully_qualified_name (name, mapset);
sprintf (command, "d.rast map=’%s’", fqn);
system(command);
}

86

12.5 Fundamental Database Access Routines

12.5.3 Finding Files in the Database

Noninteractive modules cannot make use of the interactive prompting routines described above.
For example, a command line driven module may require a database file name as one of the
command arguments. In this case, the programmer must search the database to find the mapset
where the file resides.

The following routines search the database for files:

char * find a database
fileG_find_file (char *element, char *name, char *mapset)

Look for the file name under the specified element in the database. The mapset
parameter can either be the empty string "", which means search all the mapsets in
the user’s current mapset search path,5 or it can be a specific mapset, which means
. look for the file only in this one mapset (for example, in the current mapset).
If found, the mapset where the file lives is returned. If not found, the NULL pointer
is returned.
If the user specifies a fully qualified file name, (i.e, a name that also contains the
mapset; see 12.5.2 Fully Qualified File Names (p. 86)) then G_find_file() modifies
name by eliminating the mapset from the name
For example, to find a "paint/labels" file anywhere in the database:

char name[50];
char *mapset;
if ((mapset = G_find_file("paint/labels",name,""))

== NULL)
/* not found */

To check that the file exists in the current mapset:

char name[50];
if (G_find_file("paint/labels",name,G_mapset())

== NULL)
/* not found */

12.5.4 Legal File Names

Not all names that a user may enter will be legal files for the GRASS databases. The routines
which create new files require that the new file have a leg al name. The routines which prompt
the user for file names (e.g., G_ask_new) guarantee that the name entered by the user will be
legal. If the name is obtained from the command line, for example, the programmer must check
that the name is legal. The following routine checks for legal file names:

int check for legal
database file
names

5See 4.7.1 Mapset Search Path (p. 22) for more details about the search path

87

12 GIS Library

G_legal_filename (char *name)

Returns 1 if name is ok, -1 otherwise.

12.5.5 Opening an Existing Database File for Reading

The following routines open the file name in mapset from the specified database element for
reading (but not for writing). The file name and mapset can be obtained interactively using
G_ask_old, and noninteractively using G_find_file.

intopen a
database file

for reading
G_open_old (char *element, char *name, char *mapset)

The database file name under the element in the specified mapset is opened for
reading (but not for writing).
The UNIX open() routine is used to open the file. If the file does not exist, -1 is
returned. Otherwise the file descriptor from the open() is returned.

FILE *open a
database file

for reading
G_fopen_old (char *element, char *name, char *mapset)

The database file name under the element in the specified mapset is opened for
reading (but not for writing).
The UNIX fopen() routine, with "r" read mode, is used to open the file. If the file
does not exist, the NULL pointer is returned. Otherwise the file descriptor from the
fopen() is returned.

12.5.6 Opening an Existing Database File for Update

The following routines open the file name in the current mapset from the specified database ele-
ment for writing. The file must exist. Its name can be obtained interactively using G_ask_in_mapset,
and noninteractively using G_find_file.

intopen a
database file

for update
G_open_update (char *element, char *name)

The database file name under the element in the current mapset is opened for
reading and writing.
The UNIX open() routine is used to open the file. If the file does not exist, -1 is
returned. Otherwise the file is positioned at the end of the file and the file descriptor
from the open() is returned.

88

12.5 Fundamental Database Access Routines

int open a
database file
for update

G_fopen_append (char *element, char *name)

The database file name under the element in the current mapset is opened for
appending (but not for reading).
The UNIX fopen() routine, with "a" append mode, is used to open the file. If the
file does not exist, the NULL pointer is returned. Otherwise the file is positioned at
the end of the file and the file descriptor from the fopen() is returned.

12.5.7 Creating and Opening a New Database File

The following routines create the new file name in the current mapset6 under the specified
database element and open it for writing. The database element is created, if it does not already
exist.

The file name should be obtained interactively using G_ask_new. If obtained noninteractively
(e.g., from the command line), G_legal_filename should be called first to make sure that name
is a valid GRASS file name. Warning. It is not an error for name to already exist. However,
the file will be removed and recreated empty. The interactive routine G_ask_new guarantees
that name will not exist, but if name is obtained from the command line, name may exist. In
this case G_find_file could be used to see if name exists.

int open a new
database fileG_open_new (char *element, char *name)

The database file name under the element in the current mapset is created and
opened for writing (but not reading).
The UNIX open() routine is used to open the file. If the file does not exist, -1 is
returned. Otherwise the file is positioned at the end of the file and the file descriptor
from the open() is returned.

FILE * open a new
database fileG_fopen_new (char *element, char *name)

The database file name under the element in the current mapset is created and
opened for writing (but not reading).
The UNIX fopen() routine, with "w" write mode, is used to open the file. If the
file does not exist, the NULL pointer is returned. Otherwise the file is positioned at
the end of the file and the file descriptor from the fopen() is returned.

6GRASS does not allow files to be created outside the current mapset; see 4.7 Database Access Rules (p. 22).

89

12 GIS Library

12.5.8 Database File Management

The following routines allow the renaming and removal of database files in the current mapset.7

intrename a
database file G_rename (char *element, char *old, char *new)

The file or directory old under the database element directory in the current mapset
is renamed to new.
Returns 1 if successful, 0 if old does not exist, and -1 if there was an error.
Bug. This routine does not check to see if the new name is a valid database file
name.

intremove a
database file G_remove (char *element, char *name)

The file or directory name under the database element directory in the current
mapset is removed.
Returns 1 if successful, 0 if name does not exist, and -1 if there was an error.
Note. If name is a directory, everything within the directory is removed as well.

Note. These functions only apply to the specific element and not to other "related" elements.
For example, if element is "cell", then the specified raster file will be removed (or renamed),
but the other support files, such as "cellhd" or "cats", will not. To remove these other files as
well, specific calls must be made for each related element.

12.6 Memory Allocation

The following routines provide memory allocation capability. They are simply calls to the
UNIX suite of memory allocation routines malloc(), realloc() and calloc(), except that if there
is not enough memory, they print a diagnostic message to that effect and then call exit().

Note. Use the G_free() routine to release memory allocated by these routines.

intfree the memory
allocated G_free(void *buf)

Free the memory allocated by the GRASS malloc routines.
7These functions only apply to the current mapset since GRASS does permit users to modify things in mapsets

other than the current mapset; see 4.7 Database Access Rules (p. 22).

90

12.6 Memory Allocation

void * memory
allocationG_malloc (int size)

Allocates a block of memory at least size bytes which is aligned properly for all
data types. A pointer to the aligned block is returned.

void * memory
allocationG_realloc (void *ptr, int size)

Changes the size of a previously allocated block of memory at ptr and returns a
pointer to the new block of memory. The size may be larger or smaller than the
original size. If the original block cannot be extended "in place", then a new block
is allocated and the original block copied to the new block.
Note. If ptr is NULL, then this routine simply allocates a block of size bytes. This
routine works around broken realloc() routines, which do not handle a NULL ptr.

void * memory
allocationG_calloc (int n, int size)

Allocates a properly aligned block of memory n*size bytes in length, initializes the
allocated memory to zero, and returns a pointer to the allocated block of memory.
Note. Allocating memory for reading and writing raster files is discussed in 12.9.5
Allocating Raster I/O Buffers (p. 109).

double * memory
allocationG_alloc_vector(int n)

Allocate a vector (array) of n doubles initialized to zero.

float * memory
allocationG_alloc_fvector(int n)

Allocate a vector (array) of n floats initialized to zero.

double ** memory
allocationG_alloc_matrix(int rows, int cols)

Allocate a matrix of rows by cols doubles initialized to zero.

91

12 GIS Library

float ** memory
allocationG_alloc_fmatrix(int rows, int cols)

Allocate a matrix of rows by cols floats initialized to zero.

intmemory
deallocation G_free_vector(double *v)

Deallocate a vector (array) of doubles or floats.

intmemory
deallocation G_free_matrix(double **m)

Deallocate a matrix of doubles.

intmemory
deallocation G_free_fmatrix(float **m)

Deallocate a matrix of floats.

12.7 The Region

The region concept is explained in 9.1 Region (p. 61). It can be thought of as a two-dimensional
matrix with known boundaries and rectangular cells.

There are logically two different regions. The first is the database region that the user has set
in the current mapset. The other is the region that is active in the module. This active module
region is what controls reading and writing of raster file data and sites files. The vector map
export does not take care for the active region settings.

The routines described below use a GRASS data structure Cell_head to hold region information.
This structure is defined in the "gis.h" header file. It is discussed in detail under 12.21 GIS
Library Data Structures (p. 212).

92

12.7 The Region

12.7.1 The Database Region

Reading and writing the user’s database region8 are done by the following routines:

int read the
database regionG_get_window (struct Cell_head *region)

Reads the database region as stored in the WIND file in the user’s current mapset
into region.
An error message is printed and exit() is called if there is a problem reading the
region.
Note. GRASS applications that read or write raster files should not use this routine
since its use implies that the active module region will not be used. Programs that
read or write raster file data (or vector data) can query the active module region
using G_window_rows and G_window_cols..

int write the
database regionG_put_window (struct Cell_head *region)

Writes the database region file (WIND) in the user’s current mapset from region.
Returns 1 if the region is written ok. Returns -1 if not (no diagnostic message is
printed).
Warning. Since this routine actually changes the database region, it should only
be called by modules which the user knows will change the region. It is probably
fair to say that under GRASS 3.0 only the g.region, and d.zoom modules should
call this routine.

There is another database region. This region is the default region for the location. The default
region provides the user with a "starting" region, i.e., a region to begin with and return to as a
reference point. The GRASS modules g.region allow the user to set their database region from
the default region. (See 4.6 Permanent Mapset (p. 21) for a discussion of the default region.)
The following routine reads this region:

int read the default
regionG_get_default_window (struct Cell_head *region)

Reads the default region for the location into region.
An error message is printed and exit() is called if there is a problem reading the
default region.

8Previous versions of GRASS called this the "window". Due to overuse of this term (database window, graphics
window, etc.), the term was changed to "region". However, to maintain compatibility with existing programs,
library routine names were not changed - hence the term "window" is used in the routine name (where "region"
should probably be used instead.)

93

12 GIS Library

12.7.2 The Active Module Region

The active module region is the one that is used when reading and writing raster file data. This
region determines the resampling when reading raster data. It also determines the extent and
resolution of new raster files.

Initially the active module region and the user’s database region are the same, but the program-
mer can make them different. The following routines manage the active module region.

intnumber of rows
in active region G_window_rows (void)

intnumber of
columns in

active region
G_window_cols (void)

These routines return the number of rows and columns (respectively) in the active
module region. Before raster files can be read or written, it is necessary to known
how many rows and columns are in the active region. For example:

int nrows, cols;
int row, col;
nrows = G_window_rows();
ncols = G_window_cols();
for (row = 0; row < nrows; row++)
{
read row ...
for (col = 0; col < ncols; col++)
{
process col ...
}
}

intset the active
region G_set_window (struct Cell_head *region)

This routine sets the active region from region. Setting the active region does not
change the WIND file in the database. It simply changes the region for the duration
of the module.9 A warning message is printed and -1 returned if region is not valid.
Otherwise 1 is returned.
Note. This routine overrides the region as set by the user. Its use should be very
limited since it changes what the user normally expects to happen. If this routine
is not called, then the active region will be the same as what is in the user’s WIND
file.

9However, the new region setting is not retained across the UNIX exec() call. This implies that G_set_window()
cannot be used to set the region for a module to be executed using the system() or popen() routines.

94

12.7 The Region

Warning. Calling this routine with already opened raster files has some side ef-
fects. If there are raster files which are open for reading, they will be read into the
newly set region, not the region that was active when they were opened. However,
CELL buffers allocated for reading the raster files are not automatically reallocated.
The module must reallocate them explicitly. Also, this routine does not change the
region for raster files which are open for writing. The region that was active when
the open occurred still applies to these files.

int get the active
regionG_get_set_window (struct Cell_head *region)

Gets the values of the currently active region into region. If G_set_window has
been called, then the values set by that call are retrieved. Otherwise the user’s
database region is retrieved.
Note. For modules that read or write raster data, and really need the full re-
gion information, this routine is preferred over G_get_window. However, since
G_window_rows and G_window_cols return the number of rows and columns in
the active region, the programmer should consider whether or not the full region
information is really needed before using this routine.

char * align two
regionsG_align_window (struct Cell_head *region, struct Cell_head *ref)

Modifies the input region to align to the ref region. The resolutions in region
are set to match those in ref and the region edges (north, south, east, west) are
modified to align with the grid of the ref region.
The region may be enlarged if necessary to achieve the alignment. The north is
rounded northward, the south southward, the east eastward and the west westward.
This routine returns NULL if ok, otherwise it returns an error message.

double column to
eastingG_col_to_easting (double col, struct Cell_head *region)

Converts a column relative to a region to an easting;
Note. col is a double: col+0.5 will return the easting for the center of the column;
col+0.0 will return the easting for the western edge of the column; and col+1.0 will
return the easting for the eastern edge of the column.

double row to northing
G_row_to_northing (double row, struct Cell_head *region)

95

12 GIS Library

Converts a row relative to a region to a northing;
Note. row is a double: row+0.5 will return the northing for the center of the row;
row+0.0 will return the northing for the northern edge of the row; and row+1.0
will return the northing for the southern edge of the row. double G_easting_to_col
(east, region) easting to column double east; struct Cell_head *region;
Converts an easting relative to a region to a column.
Note. The result is a double. Casting it to an integer will give the column number.

doublenorthing to row
G_northing_to_row (double north, struct Cell_head *region)

Converts a northing relative to a region to a row.
Note. the result is a double. Casting it to an integer will give the row number.

12.7.3 Projection Information

The following routines return information about the cartographic projection and zone. See 9.1
Region (p. 61) for more information about these values.

intquery
cartographic

projection
G_projection (void)

This routine returns a code indicating the projection for the active region. The
current values are:
0 unreferenced x,y (imagery data)
1 UTM
2 State Plane
3 Latitude-Longitude10

Others may be added in the future. HINT GRASS 5: 121 projections!!

char *query
cartographic

projection
G_database_projection_name (int proj)

Returns a pointer to a string which is a printable name for projection code proj (as
returned by G_projection). Returns NULL if proj is not a valid projection.

char *database units
G_database_unit_name (int plural)
10Latitude-Longitude is not yet fully supported in GRASS.

96

12.8 Latitude-Longitude Databases

Returns a string describing the database grid units. It returns a plural form (eg.
feet) if plural is true. Otherwise it returns a singular form (eg. foot).

double conversion to
metersG_database_units_to_meters_factor (void)

Returns a factor which converts the grid unit to meters (by multiplication). If the
database is not metric (eg. imagery) then 0.0 is returned.

int query
cartographic
zone

G_zone (void)

This routine returns the zone for the active region. The meaning for the zone
depends on the projection. For example zone 18 for projection type 1 would be
UTM zone 18.

12.8 Latitude-Longitude Databases

GRASS supports databases in a longitude-latitude grid using a projection where the x coordi-
nate is the longitude and the y coordinate is the latitude. This projection is called the Equidistant
Cylindrical Projection.11 ECP has the property that where am I and row-column calculations
are identical to those in planimetric grids (like UTM12). This implies that normal GRASS reg-
istration and overlay functions will work without any special considerations or modifications to
existing code. However, the projection is not planimetric. This means that distance and area
calculations are no longed Euclidean.

Also, since the world is round, maps may not have edges in the east-west direction, especially
for global databases. Maps may have the same longitude at both the east and west edges of
the display. This feature, called global wraparound, must be accounted for by GRASS modules
(particularly vector based functions, like plotting.) What follows is a description of the GISLIB
library routines that are available to support latitude-longitude databases.

12.8.1 Coordinates

Latitudes and longitudes are specified in degrees. Northern latitudes range from 0 to 90 degrees,
and southern latitudes from 0 to -90. Longitudes have no limits since longitudes ś360 degrees
are equivalent.

11Also known as Plate Carree.
12Universal Transverse Mercator Projection.

97

12 GIS Library

Coordinates are represented in ASCII using the format dd:mm:ssN or dd:mm:ssS for latitudes,
ddd:mm:ssE or ddd.mm.ssW for longitudes, and dd.mm.ss for grid resolution. For example,
80:30:24N represents a northern latitude of 80 degrees, 30 minutes, and 24 seconds. 120:15W
represents a longitute

120 degrees and 15 minutes west of the prime meridian. 30:15 represents a resolution of 30
degrees and 15 minutes. These next routines convert between ASCII representations and the
machine representation for a coordinate. They work both with latitude-longitude projections
and planimetric projections.

Note. In each subroutine, the programmer must specify the projection number. If the projection
number is PROJECTION_LL,13 then latitude-longitude ASCII format is invoked. Otherwise, a
standard floating-point to ASCII conversion is made.

inteasting to
ASCII G_format_easting (double east, char *buf, int projection)

Converts the double representation of the east coordinate to its ASCII representa-
tion (into buf).

intnorthing to
ASCII G_format_northing (double north, char *buf, int projection)

Converts the double representation of the north coordinate to its ASCII represen-
tation (into buf).

intresolution to
ASCII G_format_resolution (double resolution, char *buf, int projection)

Converts the double representation of the resolution to its ASCII representation
(into buf).

intASCII easting
to double G_scan_easting (char *buf, double *easting, int projection)

Converts the ASCII "easting" coordinate string in buf to its double representation
(into easting).

intASCII northing
to double 13 Defined in "gis.h".

98

12.8 Latitude-Longitude Databases

G_scan_northing (char *buf, double *northing, int projection)

Converts the ASCII "northing" coordinate string in buf to its double representation
(into northing).

int ASCII
resolution to
double

G_scan_resolution (char *buf, double *resolution, int projection)

Converts the ASCII "resolution" string in buf to its double representation (into
resolution).

The following are examples of how these routines are used.

double north ;
char buf[50] ;
G_scan_northing(buf, north, G_projection()); /* ASCII to double

*/
G_format_northing(north, buf, G_projection()); /* double to

ASCII */
G_format_northing(north, buf, -1); /* double to ASCII */
/* This last example forces floating-point ASCII format */

12.8.2 Raster Area Calculations

The following routines perform area calculations for raster maps., They are based on the fact
that while the latitude-longitude grid is not planimetric, the size of the grid cell at a given latitude
is constant. The first routines work in any projection.

int begin cell area
calculationsG_begin_cell_area_calculations (void)

This routine must be called once before any call to G_area_of_cell_at_row. It can
be used in either planimetric projections or the latitude-longitude projection. It
returns 2 if the projection is latitude-longitude, 1 if the projection is planimetric,
and 0 of the projection doesn’t hav e a metric (e.g. imagery.) If the return value is
1 or 0, all the grid cells in the map have the same area. Otherwise the area of a grid
cell varies with the row.

double cell area in
specified rowG_area_of_cell_at_row (int row)

99

12 GIS Library

This routine returns the area in square meters of a cell in the specified row. This
value is constant for planimetric grids and varies with the row if the projection is
latitude-longitude.

intbegin area
calculations for

ellipsoid
G_begin_zone_area_on_ellipsoid (double a, double e2, double s)

Initializes raster area calculations for an ellipsoid, where a is the semi-major axis
of the ellipse (in meters), e2 is the ellipsoid eccentricity squared, and s is a scale
factor to allow for calculations of part of the zone (s=1.0 is full zone, s=0.5 is half
the zone, and s=360/ew_res is for a single grid cell).
Note. e2 must be positive. A negative value makes no sense, and zero implies a
sphere.

doublearea between
latitudes G_area_for_zone_on_ellipsoid (double north, double south)

Returns the area between latitudes north and south scaled by the factor s passed
to G_begin_zone_area_on_ellipsoid.

intinitialize
calculations for

sphere
G_begin_zone_area_on_sphere (double r, double s)

Initializes raster area calculations for a sphere. The radius of the sphere is
r and s is a scale factor to allow for calculations of a part of the zone (see
G_begin_zone_area_on_ellipsoid).

doublearea between
latitudes G_area_for_zone_on_sphere (double north, double south)

Returns the area between latitudes north and south scaled by the factor s passed
to G_begin_zone_area_on_sphere.

12.8.3 Polygonal Area Calculations

These next routines provide area calculations for polygons. Some of the routines are specifically
for latitude-longitude, while others will function for all projections.

100

12.8 Latitude-Longitude Databases

However, there is an issue for latitude-longitude that does not occur with planimetric grids.
Vector/polygon data is described as a series of x,y coordinates. The lines connecting the points
are not stored but are inferred. This is a simple, straight-forward process for planimetric grids,
but it is not simple for latitude-longitude. What is the shape of the line that connects two points
on the surface of a globe?

One choice (among many) is the shortest path from x1,y1 to x2,y2, known as the geodesic.
Another is a straight line on the grid. The area routines described below assume the latter.
Routines to work with the former have not yet been developed.

int begin polygon
area
calculations

G_begin_polygon_area_calculations (void)

This initializes the polygon area calculation routines. It is used both for planimetric
and latitude-longitude projections.
It returns 2 if the projection is latitude-longitude, 1 if the projection is planimetric,
and 0 if the projection doesn’t hav e a metric (e.g. imagery.)

double area in square
meters of
polygon

G_area_of_polygon (double *x, double *y, int n)

Returns the area in square meters of the polygon described by the n pairs of x,y co-
ordinate vertices. It is used both for planimetric and latitude-longitude projections.
Note. If the database is planimetric with the non-meter grid, this rou-
tine performs the required unit conversion to produce square meters. double
G_planimetric_polygon_area (x, y, n) area in coordinate units double *x, *y ;
int n ;
Returns the area in coordinate units of the polygon described by the n pairs of x,y
coordinate vertices for planimetric grids. If the units for x,y are meters, then the
area is in square meters. If the units are feet, then the area is in square feet, and so
on.

int begin area
calculationsG_begin_ellipsoid_polygon_area (double a, double e2)

This initializes the polygon area calculations for the ellipsoid with semi-major axis
a (in meters) and ellipsoid eccentricity squared e2.

double area of lat-long
polygonG_ellipsoid_polygon_area (double *lon, double *lat, int n)

101

12 GIS Library

Returns the area in square meters of the polygon described by the n pairs of
lat,long vertices for latitude-longitude grids.
Note. This routine assumes grid lines on the connecting the vertices (as opposed to
geodesics.)

12.8.4 Distance Calculations

Two routines perform distance calculations for any projection.

intbegin distance
calculations G_begin_distance_calculations (void)

Initializes the distance calculations. It is used both for the planimetric and latitude-
longitude projections.
It returns 2 if the projection is latitude-longitude, 1 if the projection is planimetric,
and 0 if the projection doesn’t hav e a metric (e.g. imagery.)

doubledistance in
meters G_distance (double x1, y1, x2, y2)

This routine computes the distance, in meters, from x1,y1 to x2,y2. If the projection
is latitude-longitude, this distance is measured along the geodesic. Two routines
perform geodesic distance calculations.

intbegin geodesic
distance G_begin_geodesic_distance (double a, double e2)

Initializes the distance calculations for the ellipsoid with semi-major axis a (in me-
ters) and ellipsoid eccentricity squared e2. It is used only for the latitude-longitude
projection.

doublegeodesic
distance G_geodesic_distance (double lon1, double lat1, double lon2, double lat2)

Calculates the geodesic distance from lon1,lat1 to lon2,lat2 in meters.
The calculation of the geodesic distance is fairly costly. These next three routines
provide a mechanism for calculating distance with two fixed latitudes and varying
longitude separation.

102

12.8 Latitude-Longitude Databases

intset geodesic
distance lat1 G_set_geodesic_distance_lat1 (double lat1)

Set the first latitude.

int set geodesic
distance lat2G_set_geodesic_distance_lat2 (double lat2)

Set the second latitude.

double geodesic
distanceG_geodesic_distance_lon_to_lon (double lon1, double lon2)

Calculates the geodesic distance from lon1,lat1 to lon2,lat2 in meters, where lat1
was the latitude passed to G_set_geodesic_distance_latl and lat2 was the latitude
passed to G_set_geodesic_distance_lat2.

12.8.5 Global Wraparound

These next routines provide a mechanism for determining the relative position of a pair of
longitudes. Since longitudes of ś360 are equivalent, but GRASS requires the east to be bigger
than the west, some adjustment of coordinates is necessary.

double returns east
larger than
west

G_adjust_easting (double east, struct Cell_head *region)

If the region projection is PROJECTION_LL, then this routine returns an equiva-
lent east that is larger, but no more than 360 degrees larger, than the coordinate for
the western edge of the region. Otherwise no adjustment is made and the original
east is returned.

double adjust east
longitudeG_adjust_east_longitude (double east, double west)

This routine returns an equivalent east that is larger, but no more than 360 larger
than the west coordinate.
This routine should be used only with latitude-longitude coordinates.

103

12 GIS Library

int shortest way
between
eastings

G_shortest_way (double *east1, double *east2)

If the database projection is PROJECTION_LL, then east1,east2 are changed
so that they are no more than 180 degrees apart. Their true locations are not
changed. If the database projection is not PROJECTION_LL, then east1,east2
are not changed.

12.8.6 Miscellaneous

char *return ellopsoid
name G_ellipsoid_name (int n)

This routine returns a pointer to a string containg the name for the nth ellipsoid in
the GRASS ellipsoid table; NULL when n is too large. It can be used as follows:

int n ;
char *name ;
for (n=0 ; name=G_ellipsoid_name(n) ; n++)
fprintf(stdout, "%s 	 n", name);

intget ellipsoid by
name G_get_ellipsoid_by_name (char *name, double *a, double *e2)

This routine returns the semi-major axis a (in meters) and eccentricity squared e2
for the named ellipsoid. Returns 1 if name is a known ellipsoid, 0 otherwise.

intget ellipsoid
parameters G_get_ellipsoid_parameters (double *a, double *e2)

This routine returns the semi-major axis a (in meters) and the eccentricity squared
e2 for the ellipsoid associated with the database. If there is no ellipsoid explicitly
associated with the database, it returns the values for the WGS 84 ellipsoid.

doublemeridional
radius of

curvature
G_meridional_radius_of_curvature (double lon, double a, double e2)

Returns the meridional radius of curvature at a given longitude:

��
�������� ���
������� ������� ��� �"!#� ��$��

104

12.9 Raster File Processing

double transverse
radius of
curvature

G_transverse_radius_of_curvature (double lon, double a, double e2)

Returns the transverse radius of curvature at a given longitude:

%&�

������� ���'��� � �(�"!#�') $��

double radius of
conformal
tangent sphere

G_radius_of_conformal_tangent_sphere (double lon, double a, double e2)

Returns the radius of the conformal sphere tangent to ellipsoid at a given longitude:

*+�
�������� � �) $��
������� ������� � � �,!#�

int pole in polygon
G_pole_in_polygon (double *x, double *y, int n)

For latitude-longitude coordinates, this routine determines if the polygon defined
by the n coordinate vertices x,y contains one of the poles.
Returns -1 if it contains the south pole; 1 if it contains the north pole; 0 if it contains
neither pole.
Note. Use this routine only if the projection is PROJECTION_LL.

12.9 Raster File Processing

Raster files are the heart and soul of GRASS. Because of this, a suite of routines which process
raster file data has been provided. The processing of raster files consists of determining which
raster file or files are to be processed (either by prompting the user or as specified on the module
command line), locating the raster file in the database, opening the raster file, dynamically
allocating i/o buffers, reading or writing the raster file, closing the raster file, and creating
support files for newly created raster files.

All raster file data is of type CELL14 , which is defined in "gis.h".

12.9.1 Prompting for Raster Files

The following routines interactively prompt the user for a raster file name. In each, the prompt
string will be printed as the first line of the full prompt which asks the user to enter a raster file
14See A.2 Appendix B: The CELL Data Type (p. 436) for a discussion of the CELL type and how to use it (and avoid

misusing it).

105

12 GIS Library

name. If prompt is the empty string "" then an appropriate prompt will be substituted. The
name that the user enters is copied into the name buffer15 These routines have a built-in ’list’
capability which allows the user to get a list of existing raster files.

The user is required to enter a valid raster file name, or else hit the RETURN key to cancel the
request. If the user enters an invalid response, a message is printed, and the user is prompted
again. If the user cancels the request, the NULL pointer is returned. Otherwise the mapset
where the raster file lives or is to be created is returned. Both the name and the mapset are used
in other routines to refer to the raster file.

char *prompt for
existing raster

file
G_ask_cell_old (char *prompt, char *name)

Asks the user to enter the name of an existing raster file in any mapset in the
database.

char *prompt for
existing raster

file
G_ask_cell_in_mapset (char *prompt, char *name)

Asks the user to enter the name of an existing raster file in the current mapset.

char *prompt for new
raster file G_ask_cell_new (char *prompt, char *name)

Asks the user to enter a name for a raster file which does not exist in the current
mapset.

Here is an example of how to use these routines. Note that the programmer must handle the
NULL return properly:

char *mapset;
char name[50];
mapset = G_ask_cell_old("Enter raster file to be processed",

name);
if (mapset = = NULL)
return(0);

15The size of name should be large enough to hold any GRASS file name. Most systems allow file names to be
quite long. It is recommended that name be declared char name.

106

12.9 Raster File Processing

12.9.2 Finding Raster Files in the Database

Noninteractive modules cannot make use of the interactive prompting routines described above.
For example, a command line driven module may require a raster file name as one of the com-
mand arguments. GRASS allows the user to specify raster file names (or any other database
file) either as a simple unqualified name, such as "soils", or as a fully qualified name, such as
"soils@mapset", where mapset is the mapset where the raster file is to be found. Often only the
unqualified raster file name is provided on the command line.

The following routines search the database for raster files:

char * find a raster file
G_find_cell (char *name, char *mapset)

Looks for the raster file name in the database. The mapset parameter can either
be the empty string "", which means search all the mapsets in the user’s current
mapset search path,16 or it can be a specific mapset name, which means look for
the raster file only in this one mapset (for example, in the current mapset). If found,
the mapset where the raster file lives is returned. If not found, the NULL pointer is
returned.
If the user specifies a fully qualified raster file which exists, then G_find_cell()
modifies name by removing the "@mapset".
For example, to find a raster file anywhere in the database:

char name[50];
char *mapset;
if ((mapset = G_find_cell(name,"")) = = NULL)
/* not found */

To check that the raster file exists in the current mapset:

char name[50];
if (G_find_cell(name,G_mapset()) = = NULL)
/* not found */

12.9.3 Opening an Existing Raster File

The following routine opens the raster file name in mapset for reading.

The raster file name and mapset can be obtained interactively using G_ask_cell_old or G_ask_cell_in_mapset,,
and noninteractively using G_find_cell

int open an
existing raster
file

G_open_cell_old (char *name, char *mapset)
16See 4.7.1 Mapset Search Path (p. 22) for more details about the search path.

107

12 GIS Library

This routine opens the raster file name in mapset for reading. A nonnegative file
descriptor is returned if the open is successful. Otherwise a diagnostic message
is printed and a negative value is returned. This routine does quite a bit of work.
Since GRASS users expect that all raster files will be resampled into the current
region, the resampling index for the raster file is prepared by this routine after the
file is opened. The resampling is based on the active module region.17 Preparation
required for reading the various raster file formats18 is also done.

12.9.4 Creating and Opening New Raster Files

The following routines create the new raster file name in the current mapset19 and open it
for writing. The raster file name should be obtained interactively using G_ask_cell_new. If
obtained noninteractively (e.g., from the command line), G_legal_filename should be called
first to make sure that name is a valid GRASS file name.

Note. It is not an error for name to already exist. New raster files are actually created as
temporary files and moved into the cell directory when closed. This allows an existing raster
file to be read at the same time that it is being rewritten. The interactive routine G_ask_cell_new
guarantees that name will not exist, but if name is obtained from the command line, name may
exist. In this case G_find_cell could be used to see if name exists.

Warning. However, there is a subtle trap. The temporary file, which is created using G_tempfile,
is named using the current process id. If the new raster file is opened by a parent process which
exits after creating a child process using fork(),20 the raster file may never get created since the
temporary file would be associated with the parent process, not the child. GRASS management
automatically removes temporary files associated with processes that are no longer running. If
fork() must be used, the safest course of action is to create the child first, then open the raster
file. (See the discussion under G_tempfile for more details.)

FILE *open a new
raster file

(sequential)
G_open_cell_new (char *name)

Creates and opens the raster file name for writing by G_put_map_row which writes
the file row by row in sequential order. The raster file data will be compressed as it
is written.
A nonnegative file descriptor is returned if the open is successful. Otherwise a
diagnostic message is printed and a negative value is returned.

FILE *open a new
raster file
(random)

G_open_cell_new_random (char *name)
17See also 12.7 The Region (p. 92).
18See 5.2 Raster File Format (p. 28) for an explanation of the various raster file formats.
19GRASS does not allow files to be created outside the current mapset. See 4.7 Database Access Rules (p. 22).
20See also G_fork.

108

12.9 Raster File Processing

Creates and opens the raster file name for writing by G_put_map_row_random
which allows writing the raster file in a random fashion. The file will be created
uncompressed.21

A nonnegative file descriptor is returned if the open is successful. Otherwise a
diagnostic message is printed and a negative value is returned.

FILE * open a new
raster file
(uncompressed)

G_open_cell_new_uncompressed (char *name

Creates and opens the raster file name for writing by G_put_map_row which writes
the file row by row in sequential order. The raster file will be in uncompressed
format when closed.
A nonnegative file descriptor is returned if the open is successful. Otherwise a
warning message is printed on stderr and a negative value is returned.
General use of this routine is not recommended.22 This routine is provided so the
r.compress module can create uncompressed raster files.

12.9.5 Allocating Raster I/O Buffers

Since there is no predefined limit for the number of columns in the region,23 buffers which are
used for reading and writing raster data must be dynamically allocated.

CELL * allocate a
raster bufferG_allocate_cell_buf (void)

This routine allocates a buffer of type CELL just large enough to hold one row of
raster data (based on the number of columns in the active region).

CELL *cell;
cell = G_allocate_cell_buf(void);

If larger buffers are required, the routine G_malloc can be used.
If sufficient memory is not available, an error message is printed and exit() is called.

int zero a raster
bufferG_zero_cell_buf (CELL *buf)

21Nor will the file get automatically compressed when it is closed. If a compressed file is desired, it can be com-
pressed explicitly after closing by a system call: system("r.compress name").

22At present, automatic raster file compression will create files which, in most cases, are smaller than if they were
uncompressed. In certain cases, the compressed raster file may be larger. This can happen with imagery data,
which do not compress well at all. However, the size difference is usually small. Since future enhancements
to the compression method may improve compression for imagery data as well, it is best to create compressed
raster files in all cases.

23See A.3 to find the number of columns in the region.

109

12 GIS Library

This routines assigns each member of the raster buffer array buf to zero. It assumes
that buf has been allocated using G_allocate_cell_buf.

12.9.6 Reading Raster Files

Needs updating for GRASS 5!! See later in this file.

Raster data can be thought of as a two-dimensional matrix. The routines described below read
one full row of the matrix. It should be understood, however, that the number of rows and
columns in the matrix is determined by the region, not the raster file itself. Raster data is always
read resampled into the region.24 This allows the user to specify the coverage of the database
during analyses. It also allows databases to consist of raster files which do not cover exactly the
same area, or do not have the same grid cell resolution. When raster files are resampled into the
region, they all "look" the same.

Note. The rows and columns are specified "C style", i.e., starting with 0.

THIS FUNCTION IS DEPRECATED IN GRASS 5! SEE NEXT CHAPTER!

intread a raster
file G_get_map_row (int fd, CELL *cell, int row)

This routine reads the specified row from the raster file open on file descriptor
fd (as returned by G_open_cell_old) into the cell buffer. The cell buffer must be
dynamically allocated large enough to hold one full row of raster data. It can be
allocated using G_allocate_cell_buf.
This routine prints a diagnostic message and returns -1 if there is an error reading
the raster file. Otherwise a nonnegative value is returned.

intread a raster
file (without

masking)
G_get_map_row_nomask (int fd, CELL *cell, int row)

This routine reads the specified row from the raster file open on file descriptor fd
into the cell buffer like G_get_map_row() does. The difference is that masking is
suppressed. If the user has a mask set, G_get_map_row() will apply the mask but
G_get_map_row_nomask() will ignore it.
This routine prints a diagnostic message and returns -1 if there is an error reading
the raster file. Otherwise a nonnegative value is returned.

24The GRASS region is discussed from a user perspective in 9.1 Region (p. 61) and from a programmer perspective
in 12.7 The Region (p. 92) . The routines which are commonly used to determine the number of rows and
columns in the region are G_window_row and G_window_cols.

110

12.9 Raster File Processing

Note. Ignoring the mask is not generally acceptable. Users expect the mask to
be applied. However, in some cases ignoring the mask is justified. For example,
the GRASS modules r.describe, which reads the raster file directly to report all
data values in a raster file, and r.slope.aspect, which produces slope and aspect
from elevation, ignore both the mask and the region. However, the number of
GRASS modules which do this should be minimal. See 9.2 Mask (p. 63) for more
information about the mask.

12.9.7 Writing Raster Files

Needs updating for GRASS 5!! See later in this file.

The routines described here write raster file data.

int write a raster
file (sequential)G_put_map_row (int fd, CELL *buf)

This routine writes one row of raster data from buf to the raster file open on file
descriptor fd. The raster file must have been opened with G_open_cell_new.
The cell buf must have been allocated large enough for the region, perhaps using
G_allocate_cell_buf.
If there is an error writing the raster file, a warning message is printed and -1 is
returned. Otherwise 1 is returned.
Note. The rows are written in sequential order. The first call writes row 0, the
second writes row 1, etc. The following example assumes that the raster file name
is to be created:

int fd, row, nrows, ncols;
CELL *buf;
fd =G_open_cell_new(name);
if (fd < 0) ERROR}
buf = G_allocate_cell_buf();
ncols =G_window_cols();
nrows = G_window_rows();
for (row = 0; row < nrows; row++)
{
/* prepare data for this row into buf */
/* write the data for the row */
G_put_map_row(fd, buf);
}

int write a raster
file (random)G_put_map_row_random (int fd, CELL *buf, int row, int col, int ncells)

111

12 GIS Library

This routine allows random writes to the raster file open on file descriptor fd. The
raster file must have been opened using G_open_cell_new_random. The raster
buffer buf contains ncells columns of data and is to be written into the raster file at
the specified row, starting at column col.

12.9.8 Closing Raster Files

All raster files are closed by one of the following routines, whether opened for reading or for
writing.

intclose a raster
file G_close_cell (int fd)

The raster file opened on file descriptor fd is closed. Memory allocated for raster
processing is freed. If open for writing, skeletal support files for the new raster file
are created as well.
Note. If a module wants to explicitly write support files (e.g., a specific color table)
for a raster file it creates, it must do so after the raster file is closed. Otherwise
the close will overwrite the support files. See 12.10 Raster Map Layer Support
Routines (p. 112) for routines which write raster support files.

intunopen a raster
file G_unopen_cell (int fd)

The raster file opened on file descriptor fd is closed. Memory allocated for raster
processing is freed. If open for writing, the raster file is not created and the tem-
porary file created when the raster file was opened is removed (see 12.9.4 Creating
and Opening New Raster Files (p. 108)).
This routine is useful when errors are detected and it is desired to not create the
new raster file. While it is true that the raster file will not be created if the module
exits without closing the file, the temporary file will not be removed at module exit.
GRASS database management will eventually remove the temporary file, but the
file can be quite large and will take up disk space until GRASS does remove it. Use
this routine as a courtesy to the user.

12.10 Raster Map Layer Support Routines

GRASS map layers have a number of support files associated with them. These files are dis-
cussed in detail in 5 Raster Maps (p. 27). The support files are the raster header, the category
file, the color table, the history file, and the range file. Each support file has its own data
structure and associated routines.

112

12.10 Raster Map Layer Support Routines

12.10.1 Raster Header File

The raster header file contains information describing the geographic extent of the map layer,
the grid cell resolution, and the format used to store the data in the raster file. The format of
this file is described in 5.3 Raster Header Format (p. 29). The routines described below use the
Cell_head structure which is shown in detail in 12.21 GIS Library Data Structures (p. 212).

int read the raster
headerG_get_cellhd (char *name, char *mapset, struct Cell_Head *cellhd)

The raster header for the raster file name in the specified mapset is read into the
cellhd structure.
If there is an error reading the raster header file, a diagnostic message is printed
and -1 is returned. Otherwise, 0 is returned.

Note. If the raster file is a reclass file, the raster header for the referenced raster file is read
instead. See 5.3.2 Reclass Format (p. 31) for information about reclass files, and G_is_reclass
for distinguishing reclass files from regular raster files.

Note. It is not necessary to get the raster header for a map layer in order to read the raster file
data. The routines which read raster file data automatically retrieve the raster header information
and use it for resampling the raster file data into the active region.25 If it is necessary to read
the raster file directly without resampling into the active region,26 then the raster header can be
used to set the active region using G_set_window.

char * adjust cell
headerG_adjust_Cell_head (struct Cell_Head *cellhd, int rflag, int cflag)

This function fills in missing parts of the input cell header (or region). It also
makes projection-specific adjustments. The cellhd structure must have its north,
south, east, west, and proj fields set. If rflag is true, then the north-south resolution
is computed from the number of rows in the cellhd structure. Otherwise the number
of rows is computed from the north-south resolution in the structure, similarly for
cflag and the number of columns and the east-west resolution. This routine returns
NULL if execution occurs without error, otherwise it returns an error message.

char * write the raster
headerG_put_cellhd (char *name, struct Cell_Head *cellhd)

This routine writes the information from the cellhd structure to the raster header
file for the map layer name in the current mapset.

25 See 12.7 The Region (p. 92).
26But see 9 Region and Mask (p. 61) for a discussion of when this should and should not be done.

113

12 GIS Library

If there was an error creating the raster header, -1 is returned. No diagnostic is
printed. Otherwise, 1 is returned to indicate success.

Note. Programmers should have no reason to use this routine. It is used by G_close_cell to
giv e new raster files correct header files, and by the r.support module to give users a means of
creating or modifying raster headers.

intreclass file?
G_is_reclass (char *name, char *mapset, char r_name, char **r_mapset)

This function determines if the raster file *name in mapset is a reclass file. If it is,
then the name and mapset of the referenced raster file are copied into the r_name
and r_mapset buffers.
Returns 1 if name is a reclass file, 0 if it is not, and -1 if there was a problem
reading the raster header for name.

intget child reclass
maps list G_is_reclassed_to (char *name, char *mapset, int *nrmaps, char ***rmaps)

This function generates a child reclass maps list from the cell_misc/reclassed_to
file which stores this list. The cell_misc/reclassed_to file is written by
G_put_reclass().
G_is_reclassed_to() is used by g.rename, g.remove and r.reclass to prevent acci-
dentally deleting the parent map of a reclassed raster map.

12.10.2 Raster Category File

GRASS map layers have category labels associated with them. The category file is structured
so that each category in the raster file can have a one-line description. The format of this file is
described in 5.4 Raster Category File Format (p. 32).

The routines described below manage the category file. Some of them use the Categories struc-
ture which is described in 12.21 GIS Library Data Structures (p. 212).

12.10.2.1 Reading and Writing the Raster Category File

The following routines read or write the category file itself:

intread raster
category file G_read_cats (char *name, char *mapset, struct Categories *cats)

114

12.10 Raster Map Layer Support Routines

The category file for raster file name in mapset is read into the cats structure. If
there is an error reading the category file, a diagnostic message is printed and -1 is
returned. Otherwise, 0 is returned.

int write raster
category fileG_write_cats (char *name, struct Categories *cats)

Writes the category file for the raster file name in the current mapset from the cats
structure.
Returns 1 if successful. Otherwise, -1 is returned (no diagnostic is printed).

char * get raster map
titleG_get_cell_title (char *name, char *mapset)

If only the map layer title is needed, it is not necessary to read the entire category
file into memory. This routine gets the title for raster file name in mapset directly
from the category file, and returns a pointer to the title. A legal pointer is always
returned. If the map layer does not have a title, then a pointer to the empty string
"" is returned.

char * change raster
map titleG_put_cell_title (char *name, char *title)

If it is only desired to change the title for a map layer, it is not necessary to read
the entire category file into memory, change the title, and rewrite the category file.
This routine changes the title for the raster file name in the current mapset directly
in the category file. It returns a pointer to the title.

12.10.2.2 Querying and Changing the Categories Structure

The following routines query or modify the information contained in the category structure:

char * get a category
labelG_get_cat (CELL n, struct Categories *cats)

This routine looks up category n in the cats structure and returns a pointer to a
string which is the label for the category. A legal pointer is always returned. If the
category does not exist in cats, then a pointer to the empty string "" is returned.
Warning. The pointer that is returned points to a hidden static buffer. Successive
calls to G_get_cat() overwrite this buffer.

115

12 GIS Library

char *get title from
category

structure struct
G_get_cats_title (Categories *cats)

Map layers store a one-line title in the category structure as well. This routine
returns a pointer to the title contained in the cats structure. A legal pointer is
always returned. If the map layer does not have a title, then a pointer to the empty
string "" is returned.

intinitialize
category
structure

G_init_cats (CELL n, char *title, struct Categories *cats)

To construct a new category file, the structure must first be initialized. This routine
initializes the cats structure, and copies the title into the structure. The number of
categories is set initially to n.
For example:

struct Categories cats;
G_init_cats ((CELL)0, "", &cats);

intset a category
label G_set_cat (CELL n, char *label, struct Categories *cats)

The label is copied into the cats structure for category n.

intset title in
category
structure

G_set_cats_title (char *title, struct Categories *cats)

The title is copied into the cats structure.

intfree category
structure
memory

G_free_cats (struct Categories *cats)

Frees memory allocated byG_read_cats, G_init_cats and G_set_cat.

12.10.3 Raster Color Table

GRASS map layers have colors associated with them. The color tables are structured so that
each category in the raster file has its own color. The format of this file is described in 5.5 Raster
Color Table Format (p. 33).

The routines that manipulate the raster color file use the Colors structure which is described in
detail in 12.21 GIS Library Data Structures (p. 212).

116

12.10 Raster Map Layer Support Routines

12.10.3.1 Reading and Writing the Raster Color File

The following routines read, create, modify, and write color tables.

int read map layer
color tableG_read_colors (char *name, char *mapset, struct Colors *colors)

The color table for the raster file name in the specified mapset is read into the
colors structure.
If the data layer has no color table, a default color table is generated and 0 is
returned. If there is an error reading the color table, a diagnostic message is printed
and -1 is returned. If the color table is read ok, 1 is returned.

int write map layer
color tableG_write_colors (char *name, char *mapset, struct Colors *colors)

The color table is written for the raster file name in the specified mapset from the
colors structure.
If there is an error, -1 is returned. No diagnostic is printed. Otherwise, 1 is returned.
The colors structure must be created properly, i.e., G_init_colors to initialize the
structure and G_add_color_rule to set the category colors.27

Note. The calling sequence for this function deserves special attention. The
mapset parameter seems to imply that it is possible to overwrite the color table
for a raster file which is in another mapset. However, this is not what actually
happens. It is very useful for users to create their own color tables for raster files
in other mapsets, but without overwriting other users’ color tables for the same
raster file. If mapset is the current mapset, then the color file for name will be
overwritten by the new color table. But if mapset is not the current mapset, then
the color table is actually written in the current mapset under the colr2 element as:
colr2/mapset/name.

12.10.3.2 Lookup Up Raster Colors

These routines translates raster values to their respective colors.

int lookup an array
of colorsG_lookup_colors (CELL *raster, unsigned char *red, unsigned char *green, unsigned

char *blue, set, int n, struct Colors *colors)

27These routines are called by higher level routines which read or create entire color tables, such asG_read_colors
or G_make_ramp_colors.

117

12 GIS Library

Extracts colors for an array of raster values. The colors for the n values in the
raster array are stored in the red, green, and blue arrays. The values in the set
array will indicate if the corresponding raster value has a color or not (1 means it
does, 0 means it does not). The programmer must allocate the red, green, blue,
and set arrays to be at least dimension n.
Note. The red, green, and blue intensities will be in the range 0 - 255.

intget a category
color G_get_color (CELL cat, int *red, int *green, int *blue, struct Colors *colors)

The red, green, and blue intensities for the color associated with category cat are
extracted from the colors structure. The intensities will be in the range 0 - 255.

12.10.3.3 Creating and/or Modifying the Color Table

These routines allow the creation of customized color tables as well as the modification of
existing tables.

intinitialize color
structure G_init_colors (struct Colors *colors)

The colors structure is initialized for subsequent calls to G_add_color_rule
andG_set_color.

intset colors
G_add_color_rule (CELL cat1, int r1, int g1, int b1, CELL cat2, int r2, int g2, int b2,
struct Colors *colors)

This is the heart and soul of the new color logic. It adds a color rule to the col-
ors structure. The colors defined by the red, green, and blue values r1,g1,b1 and
r2,g2,b2 are assigned to cat1 and cat2 respectively. Colors for data values between
cat1 and cat2 are not stored in the structure but are interpolated when queried by
G_lookup_colors and G_get_color. The color components r1,g1,b1 and r2,g2,b2
must be in the range 0 – 255.
For example, to create a linear grey scale for the range 200 – 1000:

struct Colors colr;
G_init_colors (&colr);
G_add_color_rule ((CELL)200, 0,0,0, (CELL)1000,

255,255,255);

118

12.10 Raster Map Layer Support Routines

The programmer is encouraged to review 5.5 Raster Color Table Format (p. 33)
how this routine fits into the 5.x raster color logic.
Note. The colors structure must have been initialized by G_init_colors. See
12.10.3.4 Predefined Color Tables (p. 119) for routines to build some predefined
color tables.

int set a category
colorG_set_color (CELL cat, int red, int green, int blue, struct Colors *colors)

The red, green, and blue intensities for the color associated with cate-
gory cat are set in the colors structure. The intensities must be in the
range 0 - 255. Values below zero are set as zero, values above 255 are
set as 255.
Use of this routine is discouraged because it defeats the new color
logic. It is provided only for backward compatibility. Overuse can cre-
ate large color tables. G_add_color_rule should be used whenever pos-
sible.
Note. The colors structure must have been initialized by G_init_color.

int (
G_get_color_range

C

ELL *min, CELL *max, struct Colors *colors)

get color rangeGets the minimum and maximum raster values that have colors associated with
them.

int free color
structure
memory

G_free_colors (struct Colors *colors)

The dynamically allocated memory associated with the colors structure is freed.
Note. This routine may be used after G_read_colors as well as after G_init_colors.

12.10.3.4 Predefined Color Tables

The following routines generate entire color tables. The tables are loaded into a colors structure
based on a range of category values from min to max. The range of values for a raster map can
be obtained, for example, using G_read_range. Note. The color tables are generated without
information about any particular raster file.

These color tables may be created for a raster file, but they may also be generated for loading
graphics colors.

These routines return -1 if min is greater than max, 1 otherwise.

119

12 GIS Library

int make aspect
colorsG_make_aspect_colors (struct Colors *colors, CELL min, CELL max)

Generates a color table for aspect data.

intmake color
ramp G_make_ramp_colors (struct Colors *colors, CELL min, CELL max)

Generates a color table with 3 sections: red only, green only, and blue only, each
increasing from none to full intensity. This table is good for continuous data, such
as elevation.

intmake color
wave G_make_wave_colors (struct Colors *colors, CELL min, CELL max)

Generates a color table with 3 sections: red only, green only, and blue only, each
increasing from none to full intensity and back down to none. This table is good
for continuous data like elevation.

intmake linear
grey scale G_make_grey_scale_colors (struct Colors *colors, CELL min, CELL max)

Generates a grey scale color table. Each color is a level of grey, increasing from
black to white.

intmake rainbow
colors G_make_rainbow_colors (struct Colors *colors, CELL min, CELL max)

Generates a "shifted" rainbow color table - yellow to green to cyan to blue to ma-
genta to red. The color table is based on rainbow colors. (Normal rainbow colors
are red, orange, yellow, green, blue, indigo, and violet.) This table is good for
continuous data, such as elevation.

intmake random
colors G_make_random_colors (struct Colors *colors, CELL min, CELL max)

Generates random colors. Good as a first pass at a color table for nominal data.

120

12.10 Raster Map Layer Support Routines

intmake
red,yellow,green

colors
G_make_ryg_colors (struct Colors *colors, CELL min, CELL max)

Generates a color table that goes from red to yellow to green.

int make
green,yellow,red
colors

G_make_gyr_colors (struct Colors *colors, CELL min, CELL max)

Generates a color table that goes from green to yellow to red.

int make
histogram-
stretched grey
colors

G_make_histogram_eq_colors (struct Colors *colors, struct Cell_stats *s)

Generates a histogram contrast-stretched grey scale color table that goes from
the ,histogram information in the Cell_stats structure s. (See 12.10.5 Raster
Histograms (p. 123)).

12.10.3.4.1 Raster History File The history file contains documentary information about
the raster file: who created it, when it was created, what was the original data source, what
information is contained in the raster file, etc. This file is discussed in 5.6 Raster History File
Format (p. 35)

The following routines manage this file. They use the History structure which is described in
12.21 GIS Library Data Structures (p. 212).

Note. This structure has existed relatively unmodified since the inception of GRASS. It is in
need of overhaul. Programmers should be aware that future versions of GRASS may no longer
support either the routines or the data structure which support the history file.

int read raster
history fileG_read_history (char *name, char *mapset, struct History *history)

This routine reads the history file for the raster file name in mapset into the history
structure.
A diagnostic message is printed and -1 is returned if there is an error reading the
history file. Otherwise, 0 is returned.

int write raster
history fileG_write_history (char *name, struct History *history)

121

12 GIS Library

This routine writes the history file for the raster file name in the current mapset
from the history structure.
A diagnostic message is printed and -1 is returned if there is an error writing the
history file. Otherwise, 0 is returned.
Note. The history structure should first be initialized using G_short_history.

intinitialize
history

structure
G_short_history (char *name, char *type, struct History *history)

This routine initializes the history structure, recording the date, user, module name
and the raster file name structure. The type is an anachronism from earlier versions
of GRASS and should be specified as "raster".
Note. This routine only initializes the data structure. It does not write the history
file.

12.10.4 Raster Range File

The following routines manage the raster range file. This file contains the minimum and maxi-
mum values found in the raster file. The format of this file is described in 5.7 Raster Range File
Format (p. 36).

The routines below use the Range data structure which is described in 12.21 GIS Library Data
Structures (p. 212).

intread raster
range G_read_range (char *name, char *mapset, struct Range *range)

This routine reads the range information for the raster file name in mapset into the
range structure.
A diagnostic message is printed and -1 is returned if there is an error reading the
range file. Otherwise, 0 is returned.

intwrite raster
range file G_write_range (char *name, struct Range *range)

This routine writes the range information for the raster file name in the current
mapset from the range structure.
A diagnostic message is printed and -1 is returned if there is an error writing the
range file. Otherwise, 0 is returned.

122

12.10 Raster Map Layer Support Routines

The range structure must be initialized and updated using the following routines:

int initialize range
structureG_init_range (struct Range *range)

Initializes the range structure for updates by G_update_range and
G_row_update_range.

int update range
structureG_update_range (CELL cat, struct Range *range)

Compares the cat value with the minimum and maximum values in the range struc-
ture, modifying the range if cat extends the range.

int update range
structureG_row_update_range (CELL *cell, int n, struct Range *range)

This routine updates the range data just like G_update_range, but for n values
from the cell array.

The range structure is queried using the following routine:

int get range min
and maxG_get_range_min_max (struct Range *range, CELL *min, CELL *max)

The mininum and maximum CELL values are extracted from the range structure.

12.10.5 Raster Histograms

The following routines provide a relatively efficient mechanism for computing and querying a
histogram of raster data. They use the Cell_stats structure to hold the histogram information.
The histogram is a count associated with each unique raster value representing the number of
times each value was inserted into the structure.

These next two routines are used to manage the Cell_stats structure:

int initialize cell
statsG_init_cell_stats (struct Cell_stats *s)

123

12 GIS Library

This routine, which must be called first, initializes the Cell_stats structure s.

intfree cell stats
G_free_cell_stats (struct Cell_stats *s)

The memory associated with structure s is freed. This routine may be called any
time after callingG_init_cell_stats.

This next routine stores values in the histogram:

intadd data to cell
stats G_update_cell_stats (CELL *data, int n, struct Cell_stats *s)

The n CELL values in the data array are inserted (and counted) in the Cell_stats
structure s.

Once all values are stored, the structure may be queried either randomly (ie. search for a specific
raster value) or sequentially (retrieve all raster values, in ascending order, and their related
count):

intrandom query
of cell stats G_find_cell_stat (CELL cat, long *count, struct Cell_stats *s)

This routine allows a random query of the Cell_stats structure s. The count asso-
ciated with the raster value cat is set. The routine returns 1 if cat was found in the
structure, 0 otherwise.

Sequential retrieval is accomplished using these next 2 routines:

intreset/rewind
cell stats G_rewind_cell_stats (struct Cell_stats *s)

The structure s is rewound (i.e., positioned at the first raster category) so that sorted
sequential retrieval can begin.

intretrieve sorted
cell stats G_next_cell_stat (CELL *cat, long *count, struct Cell_stats *s)

124

12.11 GRASS 5 raster API [needs to be merged into above sections]

Retrieves the next cat,count combination from the structure s. Returns 0 if there
are no more items, non-zero if there are more.
For example:

struct Cell_stats s;
CELL cat;
long count;
.
. /* updating s occurs here */
.
G_rewind_cell_stats(&s);

while (G_next_cell_stat(&cat,&count,&s)
fprintf(stdout, "%ld %ld 	 n", (long) cat, count);

12.11 GRASS 5 raster API [needs to be merged into above
sections]

12.11.1 Changes to "gis.h"

The "gis.h" contains 5 new items:

typedef float FCELL
typedef double DCELL
typedef int RASTER_MAP_TYPE;
#define CELL_TYPE 0
#define FCELL_TYPE 1
#define DCELL_TYPE 2

Also "gis.h" contains the definitions for new structures:

struct FPReclass;
struct FPRange;
struct Quant;

Some of the old structures such as

struct Categories
struct Cell_stats;
struct Range;
struct _Color_Rule_;
struct _Color_Info_;
struct Colors;

were modified, so it is very important to use functional interface to access and set elements of
these structures instead of accessing elements of the structures directly. Because some former
elements such as for example (struct Range range.pmin) do not exist anymore. It

125

12 GIS Library

was made sure non of the former elements have different meaning, so that the programs which
do access the old elements directly either do not compile or work exactly the same way as prior
to change.

12.11.2 New NULL-value functions

intSet NULL value
G_set_null_value (void *rast, int count, RASTER_MAP_TYPE data_type)

If the data_type is CELL_TYPE, calls G_set_c_null_value((CELL *) rast, count);
If the data_type is FCELL_TYPE, calls G_set_f_null_value((FCELL *) rast,
count);
If the data_type is DCELL_TYPE, calls G_set_d_null_value((DCELL *) rast,
count);

intSet CELL
NULL value G_set_c_null_value (CELL *cell, int count)

Set the count elements in the cell array to the NULL value (the largest positive
integer).

intSet FCELL
NULL value G_set_f_null_value (FCELL *fcell, int count)

Set the count elements in the fcell array to the NULL value (a bit pattern for a
float NaN - 32 bits of 1’s).

intSet CELL
NULL value G_set_d_null_value (DCELL *dcell, int count)

Set the count elements in the dcell array to the NULL value - which (a bit pattern
for a double NaN - 64 bits of 1’s).

intInsert NULL
value G_insert_null_values (void *rast, char *flags, int count, RASTER_MAP_TYPE

data_type)

126

12.11 GRASS 5 raster API [needs to be merged into above sections]

If the data_type is CELL_TYPE, calls G_insert_c_null_values ((CELL *) rast,
flags, count);
If the data_type is FCELL_TYPE, calls G_insert_f_null_values ((FCELL *) rast,
flags, count);
If the data_type is DCELL_TYPE, calls G_insert_d_null_values ((DCELL *) rast,
flags, count);

int Insert CELL
NULL valueG_insert_c_null_values (CELL *cell, char *flags, int count)

For each of the count flags which is true(!=0), set the corresponding cell to the
NULL value.

int Insert FCELL
NULL valueG_insert_f_null_values (FCELL *fcell, char *flags, int count)

For each of the count flags which is true(!=0), set the corresponding fcell to the
NULL value.

int Insert DCELL
NULL valueG_insert_d_null_values (DCELL *dcell, char *flags, int count)

For each for the count flag which is true(!=0), set the corresponding dcell to the
NULL value.

int
G_is_null_value (void *rast, RASTER_MAP_TYPE data_type)

If the data_type is CELL_TYPE, calls G_is_c_null_value ((CELL *) rast);
If the data_type is FCELL_TYPE, calls G_is_f_null_value ((FCELL *) rast);
If the data_type is DCELL_TYPE, calls G_is_d_null_value ((DCELL *) rast);

int
G_is_c_null_value (CELL *cell)

Returns 1 if cell is NULL, 0 otherwise. This will test if the value cell is the largest
int.

127

12 GIS Library

int
G_is_f_null_value (FCELL *fcell)

Returns 1 if fcell is NULL, 0 otherwise. This will test if the value fcell is a NaN.
It isn’t good enough to test for a particular NaN bit pattern since the machine code
may change this bit pattern to a different NaN. The test will be

if(fcell==0.0) return 0; if(fcell>0.0) return 0;
if(fcell<0.0) return 0; return 1;

or (as suggested by Mark Line)

return (fcell != fcell);

int
G_is_d_null_value (DCELL *dcell)

Returns 1 if dcell is NULL, 0 otherwise. This will test if the value dcell is a NaN.
Same test as in G_is_f_null_value().

char *
G_allocate_null_buf()

Allocate an array of char based on the number of columns in the current region.

int
G_get_null_value_row (int fd, char *flags, int row)

Reads a row from NULL value bitmap file for the raster map open for read on
fd. If there is no bitmap file, then this routine simulates the read as follows: non-
zero values in the raster map correspond to non-NULL; zero values correspond to
NULL. When MASK exists, masked cells are set to null. flags is a resulting array
of 0’s and 1’s where 1 corresponds to "no data" cell.

12.11.3 New Floating-point and type-independent functions

inttest for current
mask G_maskfd(void)

returns file descriptor number if MASK is in use and -1 if no MASK is in use.

128

12.11 GRASS 5 raster API [needs to be merged into above sections]

int
G_raster_map_is_fp(char *name, char *mapset)

Returns true(1) if raster map name in mapset is a floating-point dataset; false(0)
otherwise.

int
G_raster_map_type(char *name, char *mapset)

Returns the storage type for raster map name in mapset: CELL_TYPE (int);
FCELL_TYPE (float); or DCELL_TYPE (double).

int
G_open_raster_new[_uncompressed](char *name, RASTER_MAP_TYPE map_type)

If map_type == CELL_TYPE, calls G_open_map_new[_uncompressed](name);
If map_type == FCELL_TYPE, calls G_set_fp_type (FCELL_TYPE);
G_open_fp_map_new[_uncompressed](name);
If map_type == DCELL_TYPE, calls G_set_fp_type (DCELL_TYPE);
G_open_fp_map_new[_uncompressed](name);
The use of this routine by applications is discouraged since its use would override
user preferences (what precision to use).

int
G_set_fp_type (RASTER_MAP_TYPE type)

This controls the storage type for floating-point maps. It affects subsequent calls
to G_open_fp_map_new(). The type must be one of FCELL_TYPE (float) or
DCELL_TYPE (double). The use of this routine by applications is discouraged
since its use would override user preferences.

int
G_open_fp_map_new (char *name)

Opens a new floating-point raster map (in .tmp) and returns a file descrip-
tor. The storage type (float or double) is determined by the last call to
G_set_fp_type() or the default (float - unless the Unix env variable
GRASS_FP_DOUBLE is set).

129

12 GIS Library

void *
G_allocate_raster_buf(RASTER_MAP_TYPE data_type)

Allocate an array of CELL, FCELL, or DCELL (depending on data_type) based
on the number of columns in the current region.

CELL *
G_allocate_c_raster_buf()

Allocate an array of CELL based on the number of columns in the current region.

FCELL *
G_allocate_f_raster_buf()

Allocate an array of FCELL based on the number of columns in the current region.

DCELL *
G_allocate_d_raster_buf()

Allocate an array of DCELL based on the number of columns in the current region.

void *
G_incr_void_ptr (void *ptr, int size)

Advances void pointer by n bytes. returns new pointer value. Usefull in raster row
processing loops, substitutes

CELL *cell; cell += n;

Now

rast = G_incr_void_ptr(rast,
G_raster_size(data_type))

(where rast is void* and data_type is RASTER_MAP_TYPE can be used instead
of rast++.) very usefull to generalize the row processing - loop (i.e. void * buf_ptr
+= G_raster_size(data_type)

int
G_raster_size (RASTER_MAP_TYPE data_type)

130

12.11 GRASS 5 raster API [needs to be merged into above sections]

If data_type is CELL_TYPE, returns sizeof(CELL)
If data_type is FCELL_TYPE, returns sizeof(FCELL)
If data_type is DCELL_TYPE,q returns sizeof(DCELL)

int
G_raster_cmp (void *p, *q, RASTER_MAP_TYPE data_type)

Compares raster vlues p and q. Returns 1 if p > q or only q is null value -1 if p < q
or only p is null value 0 if p == q or p==q==null value

int
G_raster_cpy (void *p, void *q, int n, RASTER_MAP_TYPE data_type)

Copies raster values q into p. If q is null value, sets q to null value.

int
G_set_raster_value_c (void *p, CELL val, RASTER_MAP_TYPE data_type)

If G_is_c_null_value(val) is true, sets p to null value. Converts CELL val to
data_type (type of p) and stores result in p. Used for assigning CELL values to
raster cells of any type.

int
G_set_raster_value_f (void *p, FCELL val, RASTER_MAP_TYPE data_type)

If G_is_f_null_value(val) is true, sets p to null value. Converts FCELL val to
data_type (type of p) and stores result in p. Used for assigning FCELL values
to raster cells of any type.

int
G_set_raster_value_d (void *p, DCELL val, RASTER_MAP_TYPE data_type)

If G_is_d_null_value(val) is true, sets p to null value. Converts DCELL val to
data_type (type of p) and stores result in p. Used for assigning DCELL values to
raster cells of any type.

CELL
G_get_raster_value_c (void *p, RASTER_MAP_TYPE data_type)

131

12 GIS Library

Retrieves the value of type data_type from pointer p, converts it to CELL type and
returns the result. If null value is stored in p, returns CELL null value. Used for
retreiving CELL values from raster cells of any type. NOTE: when data_type !=
CELL_TYPE, no quantization is used, only type conversion.

FCELL
G_get_raster_value_f (void *p, RASTER_MAP_TYPE data_type)

Retrieves the value of type data_type from pointer p, converts it to FCELL type
and returns the result. If null value is stored in p, returns FCELL null value. Used
for retreiving FCELL values from raster cells of any type.

DCELL
G_get_raster_value_d (void *p, RASTER_MAP_TYPE data_type)

Retrieves the value of type data_type from pointer p, converts it to DCELL type
and returns the result. If null value is stored in p, returns DCELL null value. Used
for retreiving DCELL values from raster cells of any type.

int
G_get_raster_row (int fd, void *rast, int row, RASTER_MAP_TYPE data_type)

If data_type is CELL_TYPE, calls G_get_c_raster_row(fd, (CELL *) rast, row);
If data_type is FCELL_TYPE, calls G_get_f_raster_row(fd, (FCELL *) rast, row);
If data_type is DCELL_TYPE, calls G_get_d_raster_row(fd, (DCELL *) rast,
row);

int
G_get_raster_row_nomask (int fd, FCELL *fcell, int row, RASTER_MAP_TYPE
map_type)

Same as G_get_f_raster_row() except no masking occurs.

int
G_get_f_raster_row (int fd, FCELL fcell, int row)

Read a row from the raster map open on fd into the float array fcell performing
type conversions as necessary based on the actual storage type of the map. Mask-
ing, resampling into the current region. NULL-values are always embedded in
fcell (never converted to a value).

132

12.11 GRASS 5 raster API [needs to be merged into above sections]

int
G_get_f_raster_row_nomask (int fd, FCELL *fcell, int row)

Same as G_get_f_raster_row() except no masking occurs.

int
G_get_d_raster_row (int fd, DCELL *dcell, int row)

Same as G_get_f_raster_row() except that the array dcell is double.

int
G_get_d_raster_row_nomask (int fd, DECLL *dcell, int row)

Same as G_get_d_raster_row() except no masking occurs.

int
G_get_c_raster_row (int fd, CELL buf, int row)

Reads a row of raster data and leaves the NULL values intact. (As opposed to the
deprecated function G_get_map_row()which converts NULL values to zero.)
NOTE. When the raster map is old and null file doesn’t exist, it is assumed that all
0-cells are no-data. When map is floating point, uses quant rules set explicitly by
G_set_quant_rules or stored in map’s quant file to convert floats to integers.

int
G_get_c_raster_row_nomask (int fd, CELL buf, int row)

Same as G_get_c_raster_row() except no masking occurs.

int
G_put_raster_row (int fd, void *rast, RASTER_MAP_TYPE data_type)

If data_type is CELL_TYPE, calls G_put_c_raster_row(fd, (CELL *) rast);
If data_type is FCELL_TYPE, calls G_put_f_raster_row(fd, (FCELL *) rast);
If data_type is DCELL_TYPE, calls G_put_d_raster_row(fd, (DCELL *) rast);

133

12 GIS Library

int
G_put_f_raster_row (int fd, FCELL *fcell)

Write the next row of the raster map open on fd from the float array fcell, per-
forming type conversion to the actual storage type of the resultant map. Keep track
of the range of floating-point values. Also writes the NULL-value bitmap from the
NULL-values embedded in the fcell array.

int
G_put_d_raster_row (int fd, DCELL *dcell)

Same as G_put_f_raster_row() except that the array dcell is double.

int
G_put_c_raster_row (int fd, CELL buf)

Writes a row of raster data and a row of the null-value bitmap, only treating NULL
as NULL. (As opposed to the deprecated function G_put_map_row() which
treats zero values also as NULL.)

int
G_zero_raster_row (void *rast, RASTER_MAP_TYPE data_type)

Depending on data_type zeroes out G_window_cols() CELLs, FCELLs, or
DCELLs stored in cell buffer.

12.11.4 Upgrades to Raster Functions (comparing to GRASS 4.x)

These routines will be modified (internally) to work with floating-point and NULL-values.

Changes to GISLIB:

int
G_close_cell()

If the map is a new floating point, move the .tmp file into the fcell element,
create an empty file in the cell directory; write the floating-point range file; write
a default quantization file quantization file is set here to round fp numbers (this
is a default for now). create an empty category file, with max cat = max value
(for backwards compatibility). Move the .tmp NULL-value bitmap file to the
cell_misc directory.

134

12.11 GRASS 5 raster API [needs to be merged into above sections]

int
G_open_cell_old()

Arrange for the NULL-value bitmap to be read as well as the raster map. If no
NULL-value bitmap exists, arrange for the production of NULL-values based on
zeros in the raster map.
If the map is floating-point, arrange for quantization to integer for
G_get_c_raster_row(), et. al., by reading the quantization rules for the map
using G_read_quant().
If the programmer wants to read the floating point map using uing quant rules other
than the ones stored in map’s quant file, he/she should call G_set_quant_rules()
after the call to G_open_cell_old().

int
G_get_map_row()

If the map is floating-point, quantize the floating-point values to integer using the
quantization rules established for the map when the map was opened for reading
(this quantization is read from cell_misc/name/f_quant file, but can be reset after
opening raster map by G_set_quant_rules()).
NULL values are converted to zeros.
This routine is deprecated!!

int
G_put_map_row()

Zero values are converted to NULLs. Write a row of the NULL value bit map.
This routine is deprecated!!

Changes to D_LIB:

int
Dcell()

If the map is a floating-point map, read the map using G_get_d_map_row()
and plot using D_draw_d_cell(). If the map is an integer map, read the map
using G_get_c_raster_row() and plot using D_draw_cell().

135

12 GIS Library

12.11.5 Color Functions (new and upgraded)

12.11.5.1 Upgraded Colors structures

struct _Color_Rule_
struct
DCELL value;
unsigned char red,grn,blu;
low, high;
struct _Color_Rule_ *next;
struct _Color_Rule_ *prev; ;

struct _Color_Info_
struct _Color_Rule_ *rules;
int n_rules;
struct
unsigned char *red;
unsigned char *grn;
unsigned char *blu;
unsigned char *set;
int nalloc;
int active;
lookup;
struct
DCELL *vals;
/* pointers to color rules corresponding to the intervals between

vals */
struct _Color_Rule_ **rules;
int nalloc;
int active;
fp_lookup;
DCELL min, max;
;

struct Colors
int version; /* set by read_colors: -1=old,1=new */
DCELL shift;
int invert;
int is_float; /* defined on floating point raster data? */
int null_set; /* the colors for null are set? */
unsigned char null_red, null_grn, null_blu;
int undef_set; /* the colors for cells not in range are set?

*/
unsigned char undef_red, undef_grn, undef_blu;
struct _Color_Info_ fixed, modular;
DCELL cmin, cmax;
;

12.11.5.2 New functions to support colors for floating-point

Changes to GISLIB:

136

12.11 GRASS 5 raster API [needs to be merged into above sections]

int
G_lookup_raster_colors (void *rast, char *r, char *g, char *b, char *set, int n, struct
Colors *colors, RASTER_MAP_TYPE cell_type)

If the cell_type is CELL_TYPE, calls G_lookup_colors((CELL *)cell, r, g, b, set,
n, colors);
If the cell_type is FCELL_TYPE, calls G_lookup_f_raster_colors(FCELL *)cell,
r, g, b, set, n, colors);
If the cell_type is DCELL_TYPE, calls G_lookup_d_raster_colors(DCELL *)cell,
r, g, b, set, n, colors);

int
G_lookup_c_raster_colors (CELL *cell, char *r, char *g, char *b, char *set, int n, struct
Colors *colors)

The same as G_lookup_colors(cell, r, g, b, set, n, colors).

int
G_lookup_f_raster_colors (FCELL *fcell, char *r, char *g, char *b, char *set, int n, struct
Colors *colors)

Converts the n floating-point values in the fcell array to their r,g,b color compo-
nents. Embedded NULL-values are handled properly as well.

int
G_lookup_d_raster_colors (DCELL *dcell, char *r, char *g, char *b, char *set, int n,
struct Colors *colors)

Converts the n floating-point values in the dcell array to their r,g,b color compo-
nents. Embedded NULL-values are handled properly as well.

int
G_add_raster_color_rule (void *v1, int r1, int g1, int b1, void *v2, int r2, int g2, int b2,
struct Colors *colors, RASTER_MAP_TYPE map_type)

If map_type is CELL_TYPE, calls G_add_c_raster_color_rule ((CELL *) v1, r1,
g1, b1, (CELL *) v2, r2, g2, b2, colors);
If map_type is FCELL_TYPE, calls G_add_f_raster_color_rule ((FCELL *) v1, r1,
g1, b1, (FCELL *) v2, r2, g2, b2, colors);
If map_type is DCELL_TYPE, calls G_add_d_raster_color_rule ((DCELL *) v1,
r1, g1, b1, (DCELL *) v2, r2, g2, b2, colors);

137

12 GIS Library

int
G_add_c_raster_color_rule (CELL *v1, int r1, int g1, int b1, CELL *v2, int r2, int g2, int
b2, struct Colors *colors)

Calls G_add_color_rule(*v1, r1, g1, b1, *v2, r2, g2, b2, colors).

int
G_add_f_raster_color_rule (FCELL *v1, int r1, int g1, int b1, FCELL *v2, int r2, int g2,
int b2, struct Colors *colors)

Adds the floating-point rule that the range [v1,v2] gets a linear ramp of colors from
[r1,g1,b1] to [r2,g2,b2].
If either v1 or v2 is the NULL-value, this call is converted into
G_set_null_value_color (r1, g1, b1, colors)

int
G_add_d_raster_color_rule (DCELL *v1, int r1, int g1, int b1, DCELL *v2, int r2, int g2,
int b2, struct Colors *colors)

Adds the floating-point rule that the range [v1,v2] gets a linear ramp of colors from
[r1,g1,b1] to [r2,g2,b2].
If either v1 or v2 is the NULL-value, this call is converted into
G_set_null_value_color (r1, g1, b1, colors)

int
G_get_raster_color (void *v, int *r, int *g, int *b, struct Colors *colors,
RASTER_MAP_TYPE data_type)

Looks up the rgb colors for v in the color table colors

int
G_get_c_raster_color (CELL *v, int *r, int *g, int *b, struct Colors *colors)

Calls G_get_color(*v, r, g, b, colors).

int
G_get_f_raster_color (FCELL *v, int *r, int *g, int *b, struct Colors *colors)

138

12.11 GRASS 5 raster API [needs to be merged into above sections]

Looks up the rgb colors for v in the color table colors

int
G_get_d_raster_color (DCELL *v, int *r, int *g, int *b, struct Colors *colors)

Looks up the rgb colors for v in the color table colors

int
G_set_raster_color (void *v, int r, int g, int b, struct Colors *colors,
RASTER_MAP_TYPE data_type)

calls G_add_raster_color_rule (v, r, g, b, v, r, g, r,
colors, data_type);

int
G_set_c_raster_color (CELL *v, int r, int g, int b, struct Colors *colors)

Calls G_set_color(*v, r, g, b, colors).

int
G_set_f_raster_color (FCELL *v, int r, int g, int b, struct Colors *colors)

Inserts a rule that assigns the color r,g,b to v. It is implemented as:
G_add_f_raster_color_rule (v, r, g, b, v, r, g, r,
colors);

int
G_set_d_raster_color (DCELL *v, int r, int g, int b, struct Colors *colors)

Inserts a rule that assigns the color r,g,b to v. It is implemented as:
G_add_d_raster_color_rule (v, r, g, b, v, r, g, r,
colors);

int
G_mark_colors_as_fp (struct Colors *colors)

139

12 GIS Library

Sets a flag in the colors structure that indicates that these colors should only be
looked up using floating-point raster data (not integer data).
In particular if this flag is set, the routine G_get_colors_min_max() should
return min=-255 � and max=255 � .

These routines are in the DISPLAYLIB:

int
D_raster_of_type (void *rast, int ncols, int nrows, struct Colors *colors,
RASTER_MAP_TYPE data_type)

If map_type is CELL_TYPE, calls D_raster((CELL *) rast, ncols, nrows, colors);
If map_type is FCELL_TYPE, calls D_f_raster((FCELL *) rast, ncols, nrows, col-
ors);
If map_type is DCELL_TYPE, calls D_d_raster((DCELL *) rast, ncols, nrows,
colors);

int
D_f_raster (FCELL *fcell, int ncols, int nrows, struct Colors *colors)

Same functionality as D_raster() except that the fcell array is type FCELL.
This implies that the floating-point interfaces to the colors are used by this routine.

int
D_d_raster (DCELL *dcell, int ncols, int nrows, struct Colors *colors)

Same functionality as D_raster() except that the dcell array is type DCELL.
This implies that the floating-point interfaces to the colors are used by this routine.

int
D_color_of_type (void *value, struct Colors *colors, RASTER_MAP_TYPE data_type)

If the data_type is CELL_TYPE, calls D_color((CELL *value, colors);
If the data_type is FCELL_TYPE, calls D_f_color((FCELL *value, colors);
If the data_type is DCELL_TYPE, calls D_d_color((DCELL *value, colors);

int
D_f_color (FCELL *value, struct Colors *colors)

140

12.11 GRASS 5 raster API [needs to be merged into above sections]

Same functionality as D_color() except that the value is type FCELL. This im-
plies that the floating-point interfaces to the colors are used by this routine.

int
D_d_color (DCELL *value, struct Colors *colors)

Same functionality as D_color() except that the value is type DCELL. This im-
plies that the floating-point interfaces to the colors are used by this routine.

int
D_lookup_raster_colors (void *rast, int *colornum, int n, struct Colors *colors,
RASTER_MAP_TYPE data_type)

If the data_type is CELL_TYPE, calls D_lookup_c_raster_colors((CELL *) rast,
colornum, n, colors);
If the data_type is FCELL_TYPE, calls D_lookup_f_raster_colors((FCELL *) rast,
colornum, n, colors);
If the data_type is DCELL_TYPE, calls D_lookup_d_raster_colors((DCELL *)
rast, colornum, n, colors);

int
D_lookup_c_raster_colors (CELL *cell, int *colornum, int n, struct Colors *colors)

Same functionality as D_lookup_colors() except that the resultant color
numbers are placed into a separate colornum array (which the caller must allocate).

int
D_lookup_f_raster_colors (FCELL *fcell, int *colornum, int n, struct Colors *colors)

Same functionality as D_lookup_colors() except that the fcell array is type
FCELL and that the resultant color numbers are placed into a separate colornum
array (which the caller must allocate).

int
D_lookup_d_raster_colors (DCELL *dcell, int *colornum, int n, struct Colors *colors)

Same functionality as D_lookup_colors() except that the dcell array is type
DCELL and that the resultant color numbers are placed into a separate colornum
array (which the caller must allocate).

141

12 GIS Library

int
D_draw_cell_of_type(int A_row, DCELL *xarray, struct Colors *colors,
RASTER_MAP_TYPE map_type)

If map_type is CELL_TYPE, calls D_draw_cell (A_row, (CELL *) xarray, colors);
If map_type is FCELL_TYPE, calls D_draw_f_cell (A_row, (FCELL *) xarray,
colors);
If map_type is DCELL_TYPE, calls D_draw_d_cell (A_row, (DCELL *) xarray,
colors);

int
D_draw_f_cell (int A_row, FCELL *xarray, struct Colors *colors)

Same functionality as D_draw_cell() except that the xarray array is
type FCELL which implies a call to D_f_raster() instead of a call to
D_raster().

int
D_draw_d_cell (int A_row, DCELL *xarray, struct Colors *colors)

Same functionality as D_draw_cell() except that the xarray array is
type DCELL which implies a call to D_d_raster() instead of a call to
D_raster().

12.11.5.3 New functions to support a color for the NULL-value

int
G_set_null_value_color (int r, int g, int b, struct Colors *colors)

Sets the color (in colors) for the NULL-value to r,g,b.

int
G_get_null_value_color (int *r, int *g, int *b, struct Colors *colors)

Puts the red, green, and blue components of the color for the NULL-value into
r,g,b.

142

12.11 GRASS 5 raster API [needs to be merged into above sections]

12.11.5.4 New functions to support a default color

int
G_set_default_color (int r, int g, int b, struct Colors *colors)

Sets the default color (in colors) to r,g,b. This is the color for values which do not
have an explicit rule.

int
G_get_default_color (int *r, int *g, int *b, struct Colors *colors)

Puts the red, green, and blue components of the "default" color into r,g,b.

12.11.5.5 New functions to support treating a raster layer as a color image

int
G_get_raster_row_colors(int fd, int row, struct Colors *colors, unsigned char *red, un-
signed char *grn, unsigned char *blu, unsigned char *nul)

Reads a row of raster data and converts it to red, green and blue components ac-
cording to the colors parameter.
This provides a convenient way to treat a raster layer as a color image without
having to explictly cater for each of CELL, FCELL and DCELL types

12.11.5.6 Upgraded color functions

int
G_read_colors()

This routine reads the rules from the color file. If the input raster map is is a
floating-point map it calls G_mark_colors_as_fp().

int
G_write_colors()

143

12 GIS Library

The rules are written out using floating-point format, removing trailing zeros (pos-
sibly producing integers). The flag marking the colors as floating-point is not writ-
ten.

int
G_get_colors_min_max()

If the color table is marked as "float", then return the minimum as -(255 � *
128) and the maximum as (255 � * 128). This is to simulate a very large range so
that GRASS doesn’t attempt to use colormode float to allow interactive toggling of
colors.

int
G_lookup_colors()

Modified to return a color for NULL-values.

int
G_get_color()

Modified to return a color for the NULL-value.

12.11.5.7 Changes to the Colors structure

Modifications to the Colors structure to support colors for floating-point data and the NULL-
value consist of

� the _Color_Rule_ struct was changed to have DCELL value (instead of CELL cat) to
have the range be floating-point values instead of integer cats.

� a color for NULL was added

� the special color for zero was eliminated

� a default color for values which have no assigned color was added

� a flag was added to the Colors structure to indicate if either the map itself is floating-point
(If the map is integer and the floating point functions are used to lookup colors, the values
are checked to see if they are integer, and if they are, the integer mechanism is used)

� fp_lookup - a lookup table for floating point numbers is added. It orders the end points of
fp intervals into array with a pointer to a color rule for each inteval, and the binary search
is then used when looking up colors instead of linearly searching through all color rules.

144

12.11 GRASS 5 raster API [needs to be merged into above sections]

12.11.5.8 Changes to the colr file

� The rules are written out using floating-point format, removing trailing zeros (possibly
producing integers). For example, to ramp from red to green for the range [1.3,5.0]:

1.3:255:0:0 5:0:255:0

� The NULL-value color is written as:

nv:red:grn:blu

� The default color (for values that don’t have an explicit rule) is written as:

*:red:grn:blu

12.11.6 Range functions (new and upgraded)

12.11.6.1 Modified range functions

int
G_read_range()

Old range file (those with 4 numbers) should treat zeros in this file as NULL-values.
New range files (those with just 2 numbers) should treat these numbers as real data
(zeros are real data in this case).
An empty range file indicates that the min, max are undefined. This is a valid case,
and the result should be an initialized range struct with no defined min/max.
If the range file is missing and the map is a floating-point map, this function will
create a default range by calling G_construct_default_range().

int
G_init_range()

Must set a flag in the range structure that indicates that no min/max have been
defined - probably a "first" boolean flag.

int
G_update_range()

NULL-values must be detected and ignored.

int
G_get_range_min_max()

145

12 GIS Library

If the range structure has no defined min/max (first!=0) there will not be a valid
range. In this case the min and max returned must be the NULL-value.

int
G_write_range()

This routine only writes 2 numbers (min,max) to the range file, instead of the 4
(pmin,pmax,nmin,nmax) previously written. If there is no defined min,max, an
empty file is written.

12.11.6.2 New range functions

int
G_construct_default_range (struct Range *r)

Sets the integer range r to [1,255]

int
G_read_raster_range (void *r, char *name, char *mapset,
RASTER_MAP_TYPEmap_type)

If map_type is CELL_TYPE, calls G_read_range((struct Range *) r, name,
mapset); otherwise calls G_read_fp_range((struct FPRange *) r, name, mapset);

int
G_read_fp_range (struct FPRange *r, char *name, char *mapset)

Read the floating point range file f_range. This file is written in binary using
XDR format. If there is no defined min/max in r, an empty f_rangefile is created.
An empty range file indicates that the min, max are undefined. This is a valid case,
and the result should be an initialized range struct with no defined min/max.
If the range file is missing and the map is a floating-point map, this function will
create a default range by calling G_construct_default_range().

int
G_init_raster_range (FPRange *r, RASTER_MAP_TYPE map_type)

146

12.11 GRASS 5 raster API [needs to be merged into above sections]

If map_type is CELL_TYPE, calls G_init_range(struct Range *) r); otherwise calls
G_init_fp_range((struct FPRange *) r);

int
G_init_fp_range (FPRange *r)

Must set a flag in the range structure that indicates that no min/max have been
defined - probably a "first" boolean flag.

int
G_update_f_range (FPRange *r, FCELL *fcell, int n)

Updates the floating-point range r from the n FCELL values in fcell NULL-values
must be detected and ignored.

int
G_update_d_range (FPRange *r, DCELL *dcell, int n)

Updates the floating-point range r from the n DCELL values in dcell NULL-values
must be detected and ignored.

int
G_get_fp_range_min_max (FPRange *r, DCELL *min, DCELL *max)

Extract the min/max from the range structure r.
If the range structure has no defined min/max (first!=0) there will not be a valid
range. In this case the min and max returned must be the NULL-value.

int
G_write_fp_range (FPRange *r)

Write the floating point range file f_range. This file is written in binary using
XDR format. If there is no defined min/max in r, an empty f_rangefile is created.

147

12 GIS Library

12.11.7 New and Upgraded Cell_stats functions

Modified Cell_stats functions to handle NULL-values:

int
G_init_cell_stats()

Set the count for NULL-values to zero.

int
G_update_cell_stats()

Look for NULLs and update the NULL-value count.

int
G_next_cell_stat()

Do not return a record for the NULL-value

int
G_find_cell_stat()

Allow finding the count for the NULL-value

int
G_get_stats_for_null_value(int *count, struct Cell_stats *s)

Get a number of null values from stats structure. Note: when reporting val-
ues which appear in a map using G_next_cell_stats(), to get stats for null, call
G_get_stats_for_null_value() first, since G_next_cell_stats() does not report stats
for null.

12.11.8 New Quantization Functions

New functions to support quantization of floating-point to integer:

int
G_write_quant (char *name, char *mapset, struct Quant *q)

148

12.11 GRASS 5 raster API [needs to be merged into above sections]

Writes the f_quant file for the raster map name from q.
if mapset==G_mapset() i.e. the map is in current mapset, then the original
quant file in cell_misc/map/f_quant is written. Otherwise q is written into
quant2/mapset/name (much like colr2 element). This results in map@mapset be-
ing read using quant rules stored in q from G_mapset(). See G_read_quant() for
detailes.

int
G_set_quant_rules (int fd, struct Quant *q)

Sets quant translation rules for raster map opened for reading. fd is a file descriptor
returned by G_open_cell_old(). After calling this function, G_get_c_raster_row()
and G_get_map_row() will use rules defined by q (instead of using rules defined in
map’s quant file) to convert floats to ints.

int
G_read_quant (char *name, char *mapset, struct Quant *q)

reads quantization rules for "name" in "mapset" and stores them in the quanti-
zation structure "quant". If the map is in another mapset, first checks for quant2
table for this map in current mapset.
Return codes:
-2 if raster map is of type integer
-1 if (! G__name_is_fully_qualified ())
0 if quantization file does not exist, or the file is empty or has wrong format.
1 if non-empty quantization file exists.

int
G_quant_init (struct Quant *q)

Initializes the q struct.

int
G_quant_free (struct Quant *q)

Frees any memory allocated in q and re-initializes q by calling
G_quant_init().

int
G_quant_truncate (struct Quant *q)

149

12 GIS Library

sets the quant for q rules to perform simple truncation on floats.

int
G_quant_truncate (struct Quant *q)

sets the quant for q rules to perform simple rounding on floats.

int
G_quant_organize_fp_lookup (struct Quant *quant)

Organizes fp_lookup table for faster (logarithmic) lookup time
G_quant_organize_fp_lookup() creates a list of min and max for each quant
rule, sorts this list, and stores the pointer to quant rule that should be used
inbetween any 2 numbers in this list Also it stores extreme points for 2 infinite
rules, if exist After the call to G_quant_organize_fp_lookup() instead of linearly
searching through list of rules to find a rule to apply, quant lookup will perform a
binary search to find an interval containing floating point value, and then use the
rule associated with this interval. when the value doesn’t fall within any interval,
check for the infinite rules.

int
G_quant_add_rule (struct Quant *q, DCELL dmin, DCELL dmax, CELL cmin, CELL
cmax)

Add the rule that the floating-point range [dmin,dmin] produces an integer in the
range [cmin,cmax] by linear interpolation.
Rules that are added later have higher precedence when searching.
If any of of dmin, dmax cmin, or cmax is the NULL-value, this rule is not added
and 0 is returned. Otherwise return 1. if the fp_lookup is organized, destroy it.

int
G_quant_set_positive_infinite_rule (struct Quant *q, DCELL dmax, CELL c)

Set the rule that values greater than or equal to dmax produce the integer c. If dmax
or c is the NULL-value, return 0 and don’t set the rule. Otherwise return 1.
This rule has lower precedence than rules added with G_quant_add_rule().

int
G_quant_get_positive_infinite_rule (struct Quant *q, DCELL *dmax, CELL *c)

150

12.11 GRASS 5 raster API [needs to be merged into above sections]

Sets dmax and c to the positive "infinite" rule in q if there is one and returns
1. If there is no such rule, it just returns 0. if the fp_lookup is organized, updates
infinite limits.

int
G_quant_set_negative_infinite_rule (struct Quant *q, DCELL dmin, CELL c)

Set the rule that values less than or equal to dmin produce the integer c. If dmin
or c is the NULL-value, return 0 and don’t set the rule. Otherwise return 1. if the
fp_lookup is organized, updates infinite limits.
This rule has lower precedence than rules added with G_quant_add_rule().

int
G_quant_get_negative_infinite_rule (struct Quant *q, DCELL *dmin, CELL *c)

Sets dmin and c to the negative "infinite" rule in q if there is one and returns
1. If there is no such rule, it just returns 0.

int
G_quant_get_limits (struct Quant *q, DCELL *dmin, DCELL *dmax, CELL *cmin,
CELL *cmax)

Extracts the minimum and maximum floating-point and integer values from all
the rules (except the "infinite" rules) in q into dmin, dmax, cmin, and cmax.
Returns 1 if there are any explicit rules. If there are no explicit rules, (this includes
cases when q is set to truncate or round map), it returns 0 and sets dmin, dmax,
cmin, and cmax to NULL.

int
G_quant_nrules (struct Quant *q)

Returns the number of rules in q, excluding the negative and positive
"infinite" rules.

int
G_quant_get_rule (struct Quant *q, int n, DCELL *dmin, DCELL *dmax, CELL *cmin,
CELL *cmax)

151

12 GIS Library

Get the nth rule from q. If 0 <= n < nrules(q), extract the rule and return 1.
Otherwise return 0. This function can’t be used to get the "infinite" rules.
The order of the rules returned by increasing n is the order in which the rules are
applied when quantizing a value - the first rule applicable is used.

CELL
G_quant_get_cell_value (struct Quant *q, DCELL value)

Returns a CELL category for the floating-point value based on the quantization
rules in q. The first rule found that applies is used. The rules are searched in the
reverse order they are added to q. If no rule is found, the value is first tested against
the negative infinite rule, and finally against the positive infinite rule. if none of
these rules apply, the NULL-value is returned.
NOTE. See G_quant_organize_fp_lookup() for details on how the values are
looked up from fp_lookup table when it is active. (Right now fp_lookup is au-
tomatically organized during the first call to G_quant_get_cell_value()

int
G_quant_perform_d (struct Quant *q, DCELL *dcell, CELL *cell, int n)

Performs a quantization of the n DCELL values in the dcell array and puts the
results into the cell array.

int
G_quant_perform_f (struct Quant *q, FCELL *fcell, CELL *cell, int n)

Performs a quantization of the n FCELL values in the fcell array and puts the
results into the cell array.

These next two functions are convenience functions to allow applications to easily create quan-
tization rules other than the defaults:

int
G_quantize_fp_map (char *name, CELL cmin, CELL cmax)

Writes the f_quant file for the raster map name with one rule. The rule is
generated using the floating-point range in f_range producing the integer range
[cmin,cmax].

152

12.11 GRASS 5 raster API [needs to be merged into above sections]

int
G_quantize_fp_map_range (char *name, DCELL dmin, DCELL dmax, CELL cmin,
CELL cmax)

Writes the f_quant file for the raster map name with one rule. The rule is gen-
erated using the floating-point range [dmin,dmax] and the integer range [min,max].
This routine differs from the one above in that the application controls the floating-
point range. For example, r.slope.aspect will use this routine to quantize the slope
map from [0.0, 90.0] to [0, 90] even if the range of slopes is not 0-90. The aspect
map would be quantized from [0.0, 360.0] to [0, 360].

12.11.9 Categories Labeling Functions (new and upgraded)

12.11.9.1 Upgraded Categories structure

All the new programs which are using Categories structure directly have to be modified to use
API functions to update and retrieve info from Categories structure. Both new and old API
function can be used, since old functions still have exact same functionality (even though inter-
nally they are implemented very differently). New function names end with raster_cats(); old
function names end with _cats().

We made sure that all old fields in Categories structure are either missing in new Categories
structure or have exactly the same meaning. We did it so that the modules using Categories
structure directly either do not compile with new gis library or work exactly the same as
bnefore. A programmer might want to read the data in a floating point map in a way that
each cell value stores index of it’s category label and data range. The way to do it is to call
G_set_quant_rules(fd, &pcats->q) after openning the map.

This is helpful when trying to collect statistics (how many cells of each category are in the map.
(although there is another new mechanism to collect such stats - see G_mark_raster_cats()).
Another reason to get a category index instead of fp values is that this index will be the FID into
GRASS-DBMS link. Also he can use G_get_ith_raster_cat() to get the category information
for each cell using this index.

Here is the new Categories structure defined in "gis.h":

struct Categories
CELL ncats ; /* total number of categories */
CELL num ; /* the highest cell values. Only exists
for backwards compatibility = (CELL)
max_fp_values in quant rules */
char *title ; /* name of data layer */

153

12 GIS Library

char *fmt ; /* printf-like format to generate labels */
float m1 ; /* Multiplication coefficient 1 */
float a1 ; /* Addition coefficient 1 */
float m2 ; /* Multiplication coefficient 2 */
float a2 ; /* Addition coefficient 2 */
struct Quant q ; /* rules mapping cell values to index in
list of labels */
char **labels ; /* array of labels of size num */
int * marks ; /* was the value with this label was used? */
int nalloc;
int last_marked_rule ;
;

12.11.9.2 Changes to the cats file

The format of explicit label entries is the same for integer maps.

cat:description

In addition label entries of new format is supported for floating point maps.

val:descr (where val is a floating point number)

or

val1:val2:descr (where val1, val2 is a floating point range)

Internally the labels are stored for fp ranges of data. However when the cats file is written, all
the decimal zeros are stripped so that integer values appear as integers in the file. Also if values
are the same, only 1 value is written (i.e. first format).

This way even though the old cats files will be processed differently internally, the user or
application programmer will not notice this difference as long as the proper api is used and the
elements of Categories structure are not accessed directly without API calls.

12.11.10 Range functions (new and upgraded)

12.11.10.1 New Functions to read/write access and modify Categories structure.

int
G_read_raster_cats (char *name, *mapset, struct Categories *pcats)

154

12.11 GRASS 5 raster API [needs to be merged into above sections]

Is the same as existing G_read_cats()

int
G_copy_raster_cats (struct Categories *pcats_to, struct Categories*pcats_from)

Allocates NEW space for quant rules and labels n pcats_to and copies all info from
pcats_from cats to pcats_to cats.
returns:
0 if successful
-1 on fail

char *
G_get_raster_cat (void *val, struct Categories *pcats, RASTER_MAP_TYPE data_type)

given a raster value val of type data_type Returns pointer to a string describing
category.

char *
G_get_c_raster_cat (CELL *val, struct Categories *pcats)

given a CELL value val Returns pointer to a string describing category.

char *
G_get_d_raster_cat (DCELL *val, struct Categories *pcats)

given a DCELL value val Returns pointer to a string describing category.

char *
G_get_f_raster_cat (FCELL *val, struct Categories *pcats)

given a FCELL value val Returns pointer to a string describing category.

int
G_set_raster_cat (void *rast1, void *rast2, struct Categories *pcats,
RASTER_MAP_TYPE data_type)

155

12 GIS Library

Adds the label for range rast1 through rast2 in category structure pcats.

int
G_set_c_raster_cat (CELL *rast1, CELL *rast2, struct Categories *pcats)

Adds the label for range rast1 through rast2 in category structure pcats.

int
G_set_f_raster_cat (FCELL *rast1, FCELL *rast2, struct Categories *pcats)

Adds the label for range rast1 through rast2 in category structure pcats.

int
G_set_d_raster_cat (DCELL *rast1, DCELL *rast2, struct Categories *pcats)

Adds the label for range rast1 through rast2 in category structure pcats.

int *
G_number_of_raster_cats (pcats)

Returns the number of labels. DO NOT use G_number_of_cats() (it returns max
cat number)

char *
G_get_ith_raster_cat (struct Categories *pcats, int i, void *rast1, void *rast2,
RASTER_MAP_TYPE data_type)

Returns i-th description and i-th data range from the list of category descriptions
with corresponding data ranges. Stores end points of data interval in rast1 and
rast2 (after converting them to data_type.

char *
G_get_ith_c_raster_cat (struct Categories *pcats, int i, CELL *rast1, CELL *rast2)

Returns i-th description and i-th data range from the list of category descriptions
with corresponding data ranges. end points of data interval in rast1 and rast2.

156

12.11 GRASS 5 raster API [needs to be merged into above sections]

char *
G_get_ith_f_raster_cat (struct Categories *pcats, int i, FCELL *rast1, FCELL *rast2)

Returns i-th description and i-th data range from the list of category descriptions
with corresponding data ranges. end points of data interval in rast1 and rast2.

char *
G_get_ith_d_raster_cat (struct Categories *pcats, int i, DCELL *rast1, DCELL *rast2)

Returns i-th description and i-th data range from the list of category descriptions
with corresponding data ranges. end points of data interval in rast1 and rast2.

char *
G_get_raster_cats_title (struct Categories *pcats)

Returns pointer to a string with title.

int
G_unmark_raster_cats (struct Categories *pcats)

Sets marks for all categories to 0. This initializes Categories structure for subse-
quest calls to G_mark_raster_cats (rast_row,...) for each row of data, where non-
zero mark for i-th label means that some of the cells in rast_row are labeled with
i-th label and fall into i-th data range.
These marks help determine from the Categories structure which labels were used
and which weren’t.

int
G_get_next_marked_raster_cat(struct Categories *pcats, void *rast1, void *rast2, long
*stats, RASTER_MAP_TYPE data_type)

Finds the next label and corresponding data range in the list of marked categories.
The category (label + data range) is marked by G_mark_raster_cats (). End points
of the data range are converted to data_type and returned in rast1, rast2. the number
of times value from i-th cat. data range appeared so far is returned in stats. See
G_unmark_raster_cats(), G_rewind_raster_cats() and G_mark_raster_cats ().

int
G_get_next_marked_c_raster_cat(struct Categories *pcats, CELL *rast1, CELL *rast2,
long *stats)

157

12 GIS Library

Finds the next label and corresponding data range in the list of marked categories.
The category (label + data range) is marked by G_mark_raster_cats (). End points
of the data range are converted to data_type and returned in rast1, rast2. the number
of times value from i-th cat. data range appeared so far is returned in stats. See
G_unmark_raster_cats(), G_rewind_raster_cats() and G_mark_raster_cats ().

int
G_get_next_marked_f_raster_cat(struct Categories *pcats, FCELL *rast1, FCELL
*rast2, long *stats)

Finds the next label and corresponding data range in the list of marked categories.
The category (label + data range) is marked by G_mark_raster_cats (). End points
of the data range are converted to data_type and returned in rast1, rast2. the number
of times value from i-th cat. data range appeared so far is returned in stats. See
G_unmark_raster_cats(), G_rewind_raster_cats() and G_mark_raster_cats ().

int
G_get_next_marked_d_raster_cat(struct Categories *pcats, DCELL *rast1, DCELL
*rast2, long *stats)

Finds the next label and corresponding data range in the list of marked categories.
The category (label + data range) is marked by G_mark_raster_cats (). End points
of the data range are converted to data_type and returned in rast1, rast2. the number
of times value from i-th cat. data range appeared so far is returned in stats. See
G_unmark_raster_cats(), G_rewind_raster_cats() and G_mark_raster_cats ().

int
G_mark_raster_cats (void *rast_row, int ncols, struct Categories *pcats,
RASTER_MAP_TYPE data_type)

Looks up the category label for each raster value in the rast_row (row of raster cell
value) and updates the marks for labels found.
NOTE: non-zero mark for i-th label stores the number of of raster cells read so far
which are labeled with i-th label and fall into i-th data range.

int
G_mark_c_raster_cats (CELL *rast_row, int ncols, struct Categories *pcats)

Looks up the category label for each raster value in the rast_row and updates the
marks for labels found.
NOTE: non-zero mark for i-th label stores the number of of raster cells read so far
which are labeled with i-th label and fall into i-th data range.

158

12.11 GRASS 5 raster API [needs to be merged into above sections]

int
G_mark_f_raster_cats (FCELL *rast_row, int ncols, struct Categories *pcats)

Looks up the category label for each raster value in the rast_row and updates the
marks for labels found.
NOTE: non-zero mark for i-th label stores the number of of raster cells read so far
which are labeled with i-th label and fall into i-th data range.

int
G_mark_d_raster_cats (DCELL *rast_row, int ncols, struct Categories *pcats)

Looks up the category label for each raster value in the rast_row and updates the
marks for labels found.
NOTE: non-zero mark for i-th label stores the number of of raster cells read so far
which are labeled with i-th label and fall into i-th data range.

int
G_rewind_raster_cats (struct Categories *pcats)

after call to this function G_get_next_marked_raster_cat() returns the first marked
cat label.

int
G_init_raster_cats (char *title, struct Categories *pcats)

Same as existing G_init_raster_cats() only ncats argument is missign. ncats has
no meaning in new Categories structure and only stores (int) largets data value for
backwards compatibility.

int
G_set_raster_cats_fmt (char *fmt, float m1, a1, m2, a2, struct Categories*pcats)

Same as existing G_set_cats_fmt()

int
G_set_raster_cats_title (char *title, struct Categories *pcats)

Same as existing G_set_cats_title()

159

12 GIS Library

int
G_write_raster_cats (char *name, struct Categories *pcats)

Same as existing G_write_cats()

int
G_free_raster_cats (struct Categories *pcats)

Same as existing G_free_cats()

12.11.11 Library Functions that are Deprecated

These functions are deprecated, since they imply that the application that uses them has not
been upgraded to handle NULL-values and should be eliminated from GRASS code.

� G_get_map_row():

To be replaced by G_get_c_raster_row().

� G_get_map_row_nomask():

To be replaced by G_get_c_raster_row_nomask().

� G_put_map_row():

To be replaced by G_put_c_raster_row().

These functions are deprecated, since they can not be upgraded to support NULL-values, and
should be eliminated from GRASS code.

� G_open_map_new_random()

� G_put_map_row_random()

Also, no support for random writing of floating-point rasters will be provided.

12.11.12 Guidelines for upgrading GRASS 4.x Modules

� Modules that process raster maps as continuous data should read raster maps as floating-
point. Modules that process raster maps as nominal data should read raster maps as
integer.

Exception: Modules that process raster colors or the modules which report on raster
categories labels should either always read the maps as floating-point, or read the maps
as integer if the map is integer and floating-point if the map is floating-point.

160

12.12 Vector File Processing

� The quantization of floating-point to integer should NOT change the color table. The
color lookup should have its own separate quantization.

� The quantization of floating-point to integer should NOT change the Categories table.
The Categories structure should have its own separate quantization.

� Modules that read or write floating-point raster maps should use double (DCELL) arrays
instead of float (FCELL) arrays.

� Modues should process NULL values in a well defined (consistent) manner. Modules that
processed zero as the pseudo NULL-value should be changed to use the true NULL-value
for this and process zero as normal value.

� Modules should process non-NULL values as normal numbers and not treat any particular
numbers (e.g. zero) as special.

12.11.13 Important hints for upgrades to raster modules

In general modules that use G_get_map_row(). should use G_get_c_raster_row()
instead.

Modules that use G_put_map_row(). should use G_put_c_raster_row() instead.

12.12 Vector File Processing

Authors:

Written by CERL, with contributions from David D. Gray.

The GIS Library contains some functions related to vector file processing. These include
prompting the user for vector files, locating vector files in the database, opening vector files,
and a few others.

Note. Most vector file processing, however, is handled by routines in the Vector Library, which
is described in 13 Vector Library (p. 219).

12.12.1 Prompting for Vector Files

The following routines interactively prompt the user for a vector file name. In each, the prompt
string will be printed as the first line of the full prompt which asks the user to enter a vector
file name. If prompt is the empty string ”” then an appropriate prompt will be substituted. The

161

12 GIS Library

name that the user enters is copied into the name buffer.28 These routines have a built-in ’list’
capability which allows the user to get a list of existing vector files.

The user is required to enter a valid vector file name, or else hit the RETURN key to cancel the
request. If the user enters an invalid response, a message is printed, and the user is prompted
again. If the user cancels the request, the NULL pointer is returned. Otherwise the mapset
where the vector file lives or is to be created is returned. Both the name and the mapset are used
in other routines to refer to the vector file.

char *prompt for an
existing vector

file
G_ask_vector_old (char *prompt, char *name)

Asks the user to enter the name of an existing vector file in any mapset in the
database.

char *prompt for an
existing vector

file
G_ask_vector_in_mapset (char *prompt, char *name)

Asks the user to enter the name of an existing vector file in the current mapset.

char *prompt for a
new vector file G_ask_vector_new (char *prompt, char *name)

Asks the user to enter a name for a vector file which does not exist in the current
mapset.

Here is an example of how to use these routines. Note that the programmer must handle the
NULL return properly:

char *mapset;
char name[50];
mapset = G_ask_vector_old(”Enter vector file to be processed”,

name);
if (mapset = = NULL)
exit(0);

28The size of name should be large enough to hold any GRASS file name. Most systems allow file names to be
quite long. It is recommended that name be declared char name.

162

12.12 Vector File Processing

12.12.2 Finding Vector Files in the Database

Noninteractive modules cannot make use of the interactive prompting routines described above.
For example, a command line driven module may require a vector file name as one of the com-
mand arguments. GRASS allows the user to specify vector file names (or any other database
file) either as a simple unqualified name, such as ”roads”, or as a fully qualified name, such as
”roads in mapset”, where mapset is the mapset where the vector file is to be found. Often only
the unqualified vector file name is provided on the command line.

The following routines search the database for vector files:

int find a vector file
G_find_vector (char *name, char *mapset)

int find a vector file
G_find_vector2 (char *name, char *mapset)

Look for the vector file name in the database. The mapset parameter can either
be the empty string ””, which means search all the mapsets in the user’s current
mapset search path,29 or it can be a specific mapset name, which means look for
the vector file only in this one mapset (for example, in the current mapset). If
found, the mapset where the vector file lives is returned. If not found, the NULL
pointer is returned.

The difference between these two routines is that if the user specifies a fully qualified vector
file which exists, then G_find_vector2() modifies name by removing the ”in mapset” while
G_find_vector() does not.30 Normally, the GRASS programmer need not worry about qualified
vs. unqualified names since all library routines handle both forms. However, if the programmer
wants the name to be returned unqualified (for displaying the name to the user, or storing it in a
data file, etc.), then G_find_vector2() should be used.

For example, to find a vector file anywhere in the database:

char name[50];
char *mapset;
if ((mapset = G_find_vector(name,” ”)) = = NULL)
/* not found */

29See 4.7.1 Mapset Search Path (p. 22) for more details about the search path.
30Be warned that G_find_vector2() should not be used directly on a command line argument, since modifying

argv[] may not be valid. The argument should be copied to another character buffer which is then passed to
G_find_vector2().

163

12 GIS Library

To check that the vector file exists in the current mapset:

char name[50];
if (G_find_vector(name,G_mapset()) = = NULL)
/* not found */

12.12.3 Opening an Existing Vector File

The following routine opens the vector file name in mapset for reading.

The vector file name and mapset can be obtained interactively using G_ask_vector_old or
G_ask_vector_in_mapset, and noninteractively using G_find_vector() or G_find_vector2().

FILE *open an
existing vector

file
G_fopen_vector_old (char *name, char *mapset)

This routine opens the vector file name in mapset for reading. A file descriptor
is returned if the open is successful. Otherwise the NULL pointer is returned (no
diagnostic message is printed).
The file descriptor can then be used with routines in the Dig Library to read the
vector file. (See 13 Vector Library (p. 219)).
Note. This routine does not call any routines in the Dig Library ; No initialization
of the vector file is done by this routine, directly or indirectly.

12.12.4 Creating and Opening New Vector Files

The following routine creates the new vector file name in the current mapset31 and opens it
for writing. The vector file name should be obtained interactively using G_ask_vector_new.
If obtained noninteractively (e.g., from the command line), G_legal_filename should be called
first to make sure that name is a valid GRASS file name.

Warning. If name already exists, it will be erased and re-created empty. The interactive rou-
tine G_ask_vector_new guarantees that name will not exist, but if name is obtained from the
command line, name may exist. In this case G_find_vector could be used to see if name exists.

FILE *open a new
vector file G_fopen_vector_new (char *name)

Creates and opens the vector file name for writing.
A file descriptor is returned if the open is successful. Otherwise the NULL pointer
is returned (no diagnostic message is printed).

31GRASS does not allow files to be created outside the current mapset. See 4.7 Database Access Rules (p. 22).

164

12.12 Vector File Processing

The file descriptor can then be used with routines in the Dig Library to write the
vector file. (See 13 Vector Library (p. 219).)
Note. This routine does not call any routines in the Dig Library; No initialization
of the vector file is done by this routine, directly or indirectly. Also, only the vector
file itself (i.e., the dig file), is created. None of the other vector support files are
created, removed, or modified in any way.

12.12.5 Reading and Writing Vector Files

Reading and writing vector files is handled by routines in the Dig Library. See 13 Vector Library
(p. 219) for details.

12.12.6 Vector Category File

GRASS vector files have category labels associated with them. The category file is structured
so that each category in the vector file can have a one-line description.

The routines described below read and write the vector category file. They use the Categories
structure which is described in 12.21 GIS Library Data Structures (p. 212).

Note. The vector category file has exactly the same structure as the raster category file. In fact,
it exists so that the module v.to.rast can convert a vector file to a raster file that has an up-to-date
category file.

The routines described in 12.10.2.2 Querying and Changing the Categories Structure (p. 115)
which modify the Categories structure can therefore be used to set and change vector categories
as well.

int read vector
category fileG_read_vector_cats (char *name, name *mapset, struct Categories *cats)

The category file for vector file name in mapset is read into the cats structure. If
there is an error reading the category file, a diagnostic message is printed and -1 is
returned. Otherwise, 0 is returned.

int write vector
category fileG_write_vector_cats (char *name, struct Categories *cats)

Writes the category file for the vector file name in the current mapset from the cats
structure.
Returns 1 if successful. Otherwise, -1 is returned (no diagnostic is printed).

165

12 GIS Library

12.13 Site List Processing (GRASS 5 Sites API)

Authors:
Darrell McCauley and Bill Brown (brown@gis.uiuc.edu)

Site files contain records describing punctual information. Records are limited to files con-
taining only characters from the US-ASCII character set. Records are separated by a newline
character (ASCII 0x0a). There are three types of records: comment records, header records,
and data records. The formats of each these types of records are described in the following
sections.

A site record in the GRASS Sites Format is divided into two parts, each with a different field
separator. Part 1 contains location in 2 or more dimensions and part 2 optionally contains
attribute information for this location. Both types of fields (and thus site records) are variable
length.

12.13.0.1 Part 1 of a Site Record: Location

Part 1 of a site record gives information about location. The field separator in part 1 of the site
record is a "pipe" (ASCII 0x7c) character. The last (non-escaped) pipe signifies the end of
part 1 (an escaped character is defined as one prefixed by a "backslash" (ASCII 0x5c)). Any
additional fields are considered attribute information.

Each field in part 1 indicates a coordinate in some space. There must be at least two fields in
part 1: the first describing a geographic easting and the second describing a geographic northing.
These may be in either decimal or degrees-minutes-second format.

Additional fields in part 1 are optional but must be stored in decimal format. They should only
be used to represent coordinate information about some space (e.g., elevation, time; depending
upon how a space is defined).

12.13.1 Part 2 of a Site Record: Attributes

Part 2 contains attribute information for the location given in part 1. The field separator in part
2 of the site record is a "space" character (ASCII 0x20), except when the space character is
contained in double quotes (ASCII 0x22). The three types of attributes are: category, decimal,
and string. These attributes may be in any order. Each of these attributes have an associated
identifier tag defining the type of attribute in a field: # (ASCII 0x23), % (ASCII 0x25), and @
(ASCII 0x40), for category, decimal, and string, respectively. No space character may immedi-
ately follow an identifier tag.

166

12.13 Site List Processing (GRASS 5 Sites API)

12.13.1.1 Category Attributes

Categories are a special kind of attribute. They are used to represent vector or raster categories
when sites are transformed into these different data formats. There may be only one category
field per record and it must be prefixed with a "pound" or "number" symbol (#). Categories
must be integers.

12.13.1.2 Decimal Attributes

Decimal attributes include both integers and floating-point numbers. They are prefixed with a
"percent" symbol (%). There may be be zero, one, or more decimal attributes in a site record.

12.13.1.3 String Attributes

String attributes are fields that contain possibly non-numeric information and are prefixed with
the "at" or "each" symbol (@). There may be be zero, one, or more string attributes in a
site record. String attributes may contain space (ASCII 0x20) characters if the entire attribute,
not including the attribute tag (@), is contained within pairs of "double quotes" ("). String
attributes may also contain double quotes if they are escaped by prefixing a "backslash" (-).

12.13.1.4 Default

If no identifier tag is prefixed (i.e., none of #, %, or @), the type of attribute defaults to string.

12.13.2 Header and Comment Record Format

In addition to the data record format, the site file may contain comment lines (records containing
a pound symbol, 0x23, in the first column) and header lines, both of which are optional. Header
records must precede all data records while comment records may occur anywhere within a
sites data file.

There are five types of header records: (1) name, (2) description, (3) timestamp, (4) label, and
(5) format.

name A name record contains the string "name|" beginning in column 1 and optionally speci-
fies the name of the database file.

description A description record contains the string "desc|" beginning in column 1 and op-
tionally describes the database file (metadata).

timestamp A timestamp record is special type of metadata that contains the string "time|"
beginning in column 1 and optionally gives a time and date associated with the entire
sites file. GRASS timestamps may be a single date/time or a range (begin/end).

167

12 GIS Library

Valid timestamp strings should be formatted using the routine G_format_timestamp,
after creating a valid TimeStamp structure using G_set_timestamp or G_set_timestamp_range.
Similar routines exist for reading (see: 23 DateTime Library (p. 349))

The GRASS DateTime utility library (see 23 DateTime Library (p. 349)) may be used to
easily and accurately perform DateTime arithmetic. A possible future upgrade would be
to specify a particular format identifier tag to indicate a DateTime. Currently, to store a
DateTime for each site record, you must specify it as a string and your application must
know to expect a DateTime.

label A label record describes what each dimension and attribute field in site data records rep-
resent. It contains the string "labels|" beginning in column 1 and optionally contains field
descriptions. No special formatting is required since this record is for user convenience
only.

format A format record describes the format of site data records. It contains the string "form|"
beginning in column 1 and a special sample data record beginning in column 6. The
special sample data record is a site data record (as describe above) containing only field
separators and identifier tags (i.e., all data removed).

All header records are optional. If present in a sites data file, header records must occur in the
before any data records in a site file.

12.13.3 TimeStamp GISlib functions for sites

#include "gis.h"
#include "site.h"

This structure is defined in gis.h, but there should be no reason to access its elements directly:

struct TimeStamp {
DateTime dt[2]; /* two datetimes */
int count;

};

Using the G_*_timestamp routines reads/writes a timestamp file in the cell_misc/rastername or
dig_misc/vectorname mapset element.

A TimeStamp can be one DateTime, or two DateTimes representing a range. When preparing
to write a TimeStamp, the programmer should use one of:

int
G_set_timestamp

to set a single DateTime

168

12.13 Site List Processing (GRASS 5 Sites API)

int
G_set_timestamp_range

to set two DateTimes.

int
G_read_raster_timestamp (char *name, char *mapset, struct TimeStamp *ts)

Returns 1 on success. 0 or negative on error.

int
G_read_vector_timestamp (char *name, char *mapset, struct TimeStamp *ts)

Returns 1 on success. 0 or negative on error.

int
G_get_timestamps (struct TimeStamp *ts, DateTime *dt1, DateTime *dt2, int *count)

Use to copy the TimeStamp information into Datetimes, so the members of struct
TimeStamp shouldn’t be accessed directly.
count=0 means no datetimes were copied
count=1 means 1 datetime was copied into dt1
count=2 means 2 datetimes were copied

int
G_init_timestamp (struct TimeStamp *ts)

Sets ts->count = 0, to indicate no valid DateTimes are in TimeStamp.

int
G_set_timestamp (struct TimeStamp *ts, DateTime *dt)

Copies a single DateTime to a TimeStamp in preparation for writing. (overwrites
any existing information in TimeStamp)

int
G_set_timestamp_range (struct TimeStamp *ts, DateTime *dt1, DateTime *dt2)

169

12 GIS Library

Copies two DateTimes (a range) to a TimeStamp in preparation for writing. (over-
writes any existing information in TimeStamp)

int
G_write_raster_timestamp (char *name, struct TimeStamp *ts)

Returns: 1 on success
-1 error - can’t create timestamp file
-2 error - invalid datetime in ts

int
G_write_vector_timestamp (char *name, struct TimeStamp *ts)

Returns: 1 on success
-1 error - can’t create timestamp file
-2 error - invalid datetime in ts

int
G_format_timestamp (struct TimeStamp *ts, char *buf)

Returns: 1 on success
-1 error

int
G_scan_timestamp (struct TimeStamp *ts, char *buf)

Returns: 1 on success
-1 error

int
G_remove_raster_timestamp (char *name)

Only files in current mapset can be removed Returns: 0 if no file
1 if successful
-1 on fail

int
G_remove_vector_timestamp (char *name)

170

12.13 Site List Processing (GRASS 5 Sites API)

Only files in current mapset can be removed Returns: 0 if no file
1 if successful
-1 on fail

12.13.4 Record Structure and Definitions

typedef struct
{
double east, north;
double *dim;
int dim_alloc;
RASTER_MAP_TYPE cattype;
CELL ccat;
FCELL fcat;
DCELL dcat;
int str_alloc;
char **str_att;
int dbl_alloc;
double *dbl_att;

} Site;

#define MAX_SITE_STRING 1024 The maximum length of a string attribute.

#define MAX_SITE_LEN 4096 The maximum length of a site record (i.e., the maximum
number of characters per line). This is the same value used in GRASS 4.x.

typedef struct
{

char *name, *desc, *form, *labels, *stime;
struct TimeStamp *time;

} Site_head;

12.13.5 Function Prototypes

12.13.5.1 Prompting for Site List Files

The following routines interactively prompt the user for a site list file name. In each, the
prompt string will be printed as the first line of the full prompt which asks the user to en-
ter a site list file name. If prompt is the empty string "" then an appropriate prompt will be
substituted. The name that the user enters is copied into the name buffer. (The size of name
should be large enough to hold any GRASS file name. Most systems allow file names to be
quite long. It is recommended that name be declared char name[50].) These routines have
a built-in "list" capability which allows the user to get a list of existing site list files.

The user is required to enter a valid site list file name, or else hit the RETURN key to cancel the
request. If the user enters an invalid response, a message is printed, and the user is prompted
again. If the user cancels the request, the NULL pointer is returned. Otherwise the mapset

171

12 GIS Library

where the site list file lives or is to be created is returned. Both the name and the mapset are
used in other routines to refer to the site list file.

char *
G_ask_sites_old (char *prompt, char *name)

Asks user to input name of an existing site list file in any mapset in the database.

char *
G_ask_sites_in_mapset (char *prompt, char *name)

Asks user to input name of an existing site list file in the current mapset.

char *
G_ask_sites_new (char *prompt, char *name)

Asks user to input name for a site list file which does not exist in the current mapset.

Here is an example of how to use these routines. Note that the programmer must handle the
NULL return properly.

char *mapset;
char name[50];
mapset = G_ask_sites_old("Enter site list file to be processed",

name);
if (mapset == NULL)
exit(0);

12.13.5.2 Opening Site List Files

The following routines open site list files:

FILE *
G_sites_open_new (char *name)

Creates an empty site list file name in the current mapset and opens it for writing.
Returns an open file descriptor is successful. Otherwise, returns NULL.

172

12.13 Site List Processing (GRASS 5 Sites API)

FILE *
G_sites_open_old (char *name, char *mapset)

Opens the site list file name in mapset for reading.
Returns an open file descriptor is successful. Otherwise, returns NULL.

12.13.5.3 Site Memory Management

Sites routines require the use of a Site structure. Routines to allocate and deallocate memory
are provided, as well as a routine which describes the format of a site list, helpful in determining
the amount of memory to be allocated.

Site *
G_site_new_struct (RASTER_MAP_TYPE c, int n, int s, int d)

Allocates and returns pointer to memory for a Site structure for storing n di-
mensions (including easting and northing; must be > 1), an optional category c,
s string attributes, and d decimal attributes. The category c can be CELL_TYPE,
FCELL_TYPE, DCELL_TYPE (as defined in gis.h), or -1 (indicating no cate-
gory attribute). Returns a pointer to a Site structure or NULL on error.

int
G_site_describe (FILE *fd, RASTER_MAP_TYPE n, int *c, int *s, int *d)

Guesses the format of a sites list (the dimensionality, the presence and type of
a category, and the number of string and decimal attributes) by reading the first
record in the file. The type of category will be CELL_TYPE, FCELL_TYPE (as
defined in gis.h), or -1 (indicating no category attribute). Reads fd, rewinds it,
and returns:
0 on success,
-1 on EOF, and
-2 for any other error.

void
G_site_free_struct (Site *site)

Free memory for a site struct previously allocated using G_site_new_struct.

Here is an example of how to use these routines.

173

12 GIS Library

int dims,cat,strs,dbls;
FILE *fp;
Site *mysite;

/* G_site_describe should be called immediately after the
* file is opened or at least before any seeks are done
* on the file.
*/

if (G_site_describe (fp, &dims, &cat, &strs, &dbls)!=0)
G_fatal_error("failed to guess format");

/*
* Allocate enough memory, according to the output
* of G_site_describe(~)
*/

mysite = G_site_new_struct (cat, dims, strs, dbls);

G_site_free_struct (mysite);

12.13.5.4 Reading and Writing Site List Files

int
G_site_get (FILE *fd, Site *s)

Reads one site record from fd and returns:
0 on success
-1 on EOF
-2 on fatal error or insufficient data
1 on format mismatch (extra data)

int
G_site_put (FILE *fd, Site *s)

Writes a site to file pointed to by fd.

char *
G_site_format (Site *s, char *fs, int id)

Returns a string containing a formatted site record, with all fields separated by fs.
If fs is NULL, a space character is used. If id is non-zero, attribute identifiers (#,
%, and @) are included.

174

12.13 Site List Processing (GRASS 5 Sites API)

int
G_site_get_head (FILE *fd, Site_head *head)

Reads the header from fd and stores it in head. If a type of header record is not
present in fd, the corresponding element of head is returned as NULL.

int
G_site_put_head (FILE *fd, Site_head *head)

Writes header information stored in head to fd. Only non-NULL fields of head
struct are written.

int
G_site_in_region (Site *site, struct Cell_head *region)

Returns 1 if site is contained within region, 0 otherwise.

int
G_site_c_cmp (void *a, void *b)

compare category attributes

int
G_site_d_cmp (void *a, void *b)

compare first decimal attributes

int
G_site_s_cmp (void *a, void *b)

compare first string attributes

Comparison functions for sorting an array of Site records using qsort. See examples.

175

12 GIS Library

12.13.5.5 GRASS 5: Reading sites with G_readsites_xyz()

[Written by Eric G . Miller <egm2@jps.net>]

int
G_readsites_xyz (FILE *fdsite, int type, int index, int size, struct Cell_head *region,
SITE_XYZ *xyz)

Read a chunk of a site file into a SITE_XYZ array setting the Z dimension from
the specified attribute. The fdsite parameter is the FILE * for the sites file;
type is the attribute type to use for the z variable value; the index is the 1–based
index value for the attribute; the size is the size of the SITE_XYZ array passed to
the function; the region is a pointer to a struct Cell_head for the current
region or NULL; and, finally, xyz is a pointer to an array of SITE_XYZwhich will
be populated. The return value is the number of records read or EOF.

SITE_XYZ *
G_alloc_site_xyz (size_t num)

Allocate an array of SITE_XYZ with size num.

void
G_free_site_xyz (SITE_XYZ *xyz)

Free a previously allocated array of SITE_XYZ.

Constants and the structure used by G_readsites_xyz().

#define SITE_COL_NUL 0
#define SITE_COL_DIM 1
#define SITE_COL_DBL 2
#define SITE_COL_STR 3

typedef struct {
double x, y, z;
RASTER_MAP_TYPE cattype;
union {

double d;
float f;
int c;

} cat ;
} SITE_XYZ;

176

12.13 Site List Processing (GRASS 5 Sites API)

The G_readsites_xyz() function, and its related memory management functions G_alloc_site_xyz()
and G_free_site_xyz(), allows the user to process a site_list when a third dimension is wanted,
but the other attributes aren’t needed. The third dimension can come from one of the n-dims,
a numeric attribute, or a string attribute (provided it can be converted to a double). The cat-
egory value is also read into the SITE_XYZ struct array when it is available. If the re-
gion [window] parameter is not NULL, then the site_list will be filtered based on the region.
G_readsites_xyz() can be used to get just the easting, northing and category value (if avail-
able) by passing SITE_COL_NUL for the field parameter.

A different idea about the indexing of n-dims is used by G_readsites_() as compared to func-
tions operating on a struct Site. The easting and northing are not counted, so the index is
2 less. Index values are 1–based; that is, the value passed to G_readsites_xyz() for the index
should be 1 or greater (it can be anything if type == SITE_COL_NUL).

G_readsites_xyz() makes it possible to process large site_lists in memory as less space is
needed for a SITE_XYZ struct versus a Site struct. Still, the user should choose a reasonably
sized array and use a looping call structure to prevent out of memory errors. The function will
die with a fatal error under the following conditions:

� Failure to “guess” the site_list structure using G_site_describe().
� Asking for an unknown attribute type (use the #define’s above).

� The site_list does not have a consistent number and type of attributes for every record.

� The Z-dimension is requested from a non-existent attribute type or the index is out of
range for the attribute type.

� Failure to convert a string attribute to a double.

The return value of G_readsites_xyz() will either be EOF (which is typically -1) or the number
of records read. If the number of records returned is less than the size of the SITE_XYZ array,
then it is safe to assume there are no more records. Subsequent calls will return EOF. WARN-
ING: Never make read calls on the site_list file stream in between calls to G_readsites_xyz()
without first saving the file position and then restoring it. G_readsites_xyz() assumes the
file stream is at the position left by previous calls.

The following is a simple program showing the use of the functions. It assumes a site_list file
with the name “test” in the PERMANENTmapset.

/* Test the new G_readsites_xyz() interface */

#include <stdio.h>
#include <stdlib.h>
#include "gis.h"
#include "site.h"

int main (void)
{

177

12 GIS Library

int i, num, ret_code, index, type;
SITE_XYZ *mysites;
struct Cell_head *region;
FILE *site_file;

G_gisinit("test_readsites");

site_file = G_sites_open_old("test", "PERMANENT");

if(!site_file) {
fprintf(stderr, "Failed to open test file\n");
exit(EXIT_FAILURE);

}

region = (struct Cell_head *) G_malloc(sizeof(struct Cell_head));
G_get_set_window(region);
num = 100;
if(NULL == (mysites = G_alloc_site_xyz(num))) {

fprintf(stderr, "Failed to allocate site array!\n");
exit(EXIT_FAILURE);

}

type = SITE_COL_DIM;
index = 1;
ret_code = G_readsites_xyz(site_file, type, index, num,

region, mysites);
printf("First Run: num = %d, type = %d, index = %d\n",

num, type, index);
printf("Returned: ret_code = %d\n", ret_code);
printf("Values --->\n");
for (i = 0; i < ret_code; i++) {

printf ("X: %f, Y: %f, Z: %f ",
mysites[i].x, mysites[i].y, mysites[i].z);

switch (mysites[i].cattype) {
case CELL_TYPE:

printf("Cat: %d\n", mysites[i].cat.c); break;
case FCELL_TYPE:

printf("Cat: %f\n", mysites[i].cat.f); break;
case DCELL_TYPE:

printf("Cat: %f\n", mysites[i].cat.d); break;
default:

printf("Cat: (nil)\n");
}

}
printf("\n");

G_free(region);
G_free_site_xyz(mysites);

return 0;
}

178

12.13 Site List Processing (GRASS 5 Sites API)

12.13.6 Sites Programming Examples

12.13.6.1 Time as String Attributes

(TODO: change to use TimeStamps or DateTime library as a single string)

In this example, we will work with the following site list:

name|time
desc|Example of using time as an attribute
time|Mon Apr 17 14:24:06 EST 1995
10.8|0|9.8|Fri Sep 13 10:00:00 1986 %31.4
11|5.5|9.9|Fri Sep 14 00:20:00 1985 %36.4
5.1|3.9|10|Fri Sep 15 00:00:30 1984 %28.4

This data has three dimensions (assume easting, northing, and elevation), five string attributes,
and one decimal attributes.

Now follow along in this skeleton C program. Remember that in real code, you should always
check return values.

#include "gis.h" /* includes stdio.h for file I/O */
#include "site.h" /* include definitions and prototypes */

int main (int argc, char **argv)
\{

int dims=0,strs=0,dbls=0;
RASTER_MAP_TYPE map_type;
Site *mysite; /* pointer to Site */
Site_head info;
FILE *fp;
char *mapset;

/* find mapset that site list is in and open the site list */
mapset = G_find_file ("site_lists", parm.input->answer, "");

fp = G_fopen_sites_old (parm.input->answer, mapset);

/* G_site_describe should be called immediately after the
* file is opened or at least before any seeks are done
* on the file.
*/
if (G_site_describe (fp, &dims, &map_type, &strs, &dbls)!=0)
G_fatal_error("failed to guess format");

fprintf(stdout,"Guessed %d %d %d %d (should be 3 5 1 0)\n",
dims, strs, dbls, cat);

/*
* Read header fields first, then write to stderr.
* This step is optional since the first call to G_site_get(~)
* would skip over any comment or header records.
*/
G_site_get_head(fp,&info);

179

12 GIS Library

G_site_put_head(stderr,&info);

/*
* Allocate enough memory, according to the output
* of G_site_describe(~)
*/
mysite = G_site_new_struct (fp, &dims, &map_type, &strs, &dbls);

/*
* G_site_get(~) returns -1 on EOF, -2 on error. This code ignores
* all records following the first invalid one.
*/
while ((err=G_site_get (fp, mysite)) == 0)
\{
/* do something useful with time information */

/* write the site to stderr instead of output file */
G_site_put(stderr,mysite);

\}
\}

Running our sample program, we get:

Mapset <PERMANENT> in Location <temporal>
GRASS 5.0 > s.egtime time-h
name|time
desc|Example of using time as an attribute
time|Mon Apr 17 14:24:06 EST 1995
10.8|0|9.8|%31.4 @Fri @Sep @13 @10:00:00 @1986
11|5.5|9.9|%36.4 @Fri @Sep @14 @00:20:00 @1985
5.1|3.9|10|%28.4 @Fri @Sep @15 @00:00:30 @1984

Compare the above output to the input site list given earlier.

In this example, we read "time" as five string attributes. Using the GRASS DateTime library,
we could convert this to GRASS DateTimes and do sometime more useful with this information.
We also could have used the TimeStamp GISlib functions to format a single standard GRASS
TimeStamp string instead of requiring 5 separate strings.

12.13.6.2 Key Points

After studying the above, you should:

� Understand the difference between dimensions and attributes;

� Understand how untagged attributes are interpreted (as string attributes);

� Know when to call G_site_get_fmt() and how to get all fields from a site record;
and

� Know how to read and write a site file.

180

12.13 Site List Processing (GRASS 5 Sites API)

12.13.6.3 Example 2: Sorting Arrays and Selective Reads

In this example, we will work again with the site list from the Time Attribute Example:

name|time
desc|Example of using time as an attribute
time|Mon Apr 17 14:24:06 EST 1995
10.8|0|9.8|Fri Sep 13 10:00:00 1986 %31.4
11|5.5|9.9|Fri Sep 14 00:20:00 1985 %36.4
5.1|3.9|10|Fri Sep 15 00:00:30 1984 %28.4

Recall that the data has three dimensions, five string attributes, and one decimal attributes.
However, in this example we are writing a program which only uses two dimensional attributes
and one decimal attribute.

Follow along in this skeleton C program and remember that, in real code, you should always
check return values!

#include "gis.h" /* includes stdio.h for file I/O */
#include "site.h" /* include definitions and prototypes */

int main (argc, argv)
char **argv;
int argc;

{
int sites_alloced=5, n=0;
Site **mysite; /* pointer to pointer to Site */

/*
* We allocate memory for an array of Site structs.
*/
mysites=(Site **) G_malloc(sites_alloced*sizeof(Site *));

/*
* Here we only allocate space for 2 dimensions and one decimal attribute.
* Thus any calls to G_site_get(~) will ingore dimensional fields
* past the first two, any category attribute, and all string attributes
*/
mysites[n] = G_site_new_struct (2, 0, 1);

while ((i=G_site_get (fp, mysites[n])) != EOF)
{
/*
* (we should test for i==2 and deal with appropriately)
*/

G_site_put(stdout,mysites[n++],0);
/*
* This snippet could have been left out for compactness since
* it is not critical to this example. However, this shows how
* to read an unknown number of sites in a robust fashion.
*/

if (n==sites_alloced)

181

12 GIS Library

{
sites_alloced+=100;
mysites=(Site **) G_realloc(mysites, sites_alloced*sizeof(Site *));
if (mysites==NULL)

G_fatal_error("memory reallocation error");
}

/*
* We must call G_site_new_struct(~) for each element
* in this array. Doing this inside the while loop instead of
* before the while loop saves memory (since we are only allocating
* on an as-needed basis).
*/

mysites[n] = G_site_new_struct (2, 0, 1);
}
G_free(mysites[n]); /* We did not need the last one */
fprintf(stdout, "\n");

/* sort the array of sites into ascending order */
qsort (mysites, n, sizeof (Site *), G_site_d_cmp);

/* write the sorted array to standard output */
for(i=0;i<n;++i)
G_site_put(stdout,mysites[i],0);

fprintf(stdout, "\n");

/* write only dimensional fields and no attributes */
for(i=0;i<n;++i)
{
mysites[i]->dbl_alloc=0;
G_site_put(stdout,mysites[i],0);

}

return 0;
}

Running our sample program, we get:

Mapset <PERMANENT> in Location <temporal>
GRASS 5.0 > s.egsort time-h
10.8|0|%31.4
11|5.5|%36.4
5.1|3.9|%28.4

5.1|3.9|%28.4
10.8|0|%31.4
11|5.5|%36.4

5.1|3.9|
10.8|0|
11|5.5|

Compare the above output to the input site list given earlier. We read only the first two dimen-
sional attributes and the first decimal attribute–all others were safely ignored.

182

12.14 General Plotting Routines

The resulting site list is sorted into ascending order according to the first decimal attribute.
Similar functions exist for sorting by the first string attribute or by category attribute. For sorting
by second or third specific fields, you may write your own qsort comparison functions using
these examples.

We can selectively write some or none of attribute fields by altering the Site structure. For
situations requiring writing of variable attributes (more complex than this example), pointer
manipulation may be necessary.

In this example, we read selectively read dimension and attribute fields,

12.13.6.4 Key Points

After studying the above, you should:

� Understand memory allocation for selective reads;

� Understand how to re-allocate memory for vectors so that static limits are not necessary;

� Know how to sort an array of Site structs by certain attributes.

� Know how to selectively write attributes to a site file.

12.14 General Plotting Routines

The following routines form the foundation of a general purpose line and polygon plotting
capability.

int Bresenham line
algorithmG_bresenham_line (int x1, int y1, int x2, int y2, int (*point)())

Draws a line from x1,y1 to x2,y2 using Bresenham’s algorithm. A routine to plot
points must be provided, as is defined as:
point(x, y) plot a point at x,y
This routine does not require a previous call to G_setup_plot to function correctly,
and is independent of all following routines.

int initialize
plotting
routines

G_setup_plot (double t, double b, double l, double r, nt (*Move)(), int (*Cont)())

Initializes the plotting capability. This routine must be called once before calling
the G_plot_*() routines described below.

183

12 GIS Library

The parameters t, b, l, r are the top, bottom, left, and right of the output x,y coor-
dinate space. They are not integers, but doubles to allow for subpixel registration
of the input and output coordinate spaces. The input coordinate space is assumed
to be the current GRASS region, and the routines supports both planimetric and
latitude- longitude coordinate systems.
Move and Cont are subroutines that will draw lines in x,y space. They will be
called as follows:
Move(x, y) move to x,y (no draw)
Cont(x, y) draw from previous position
to x,y. Cont() is responsible for clipping

intplot line
between latlon

coordinates
G_plot_line (double east1, double north1, double east2, double north2)

A line from east1,north1 to east2,north2 is plotted in output x,y coordinates (e.g.
pixels for graphics.) This routine handles global wrap-around for latitude-longitude
databases.

See G_setup_plot (A.3 Appendix C: Index to GIS Library (p. 445)) for the required coordinate
initialization procedure.

intplot filled
polygon with n

vertices
G_plot_polygon (double *east, double *north, int n)

The polygon, described by the n vertices east,north, is plotted in the output x,y
space as a filled polygon.

See G_setup_plot (A.3 Appendix C: Index to GIS Library (p. 445)) for the required coordinate
initialization procedure.

intplot multiple
polygons G_plot_area (double **xs, double **ys, int *npts, int rings)

Like G_plot_polygon, except it takes a set of polygons, each with npts[i] vertices,
where the number of polygons is specified with the rings argument. It is especially
useful for plotting vector areas with interior islands.

intx,y to east,north
G_plot_where_en (int x, int y, double *east, double *north)

The pixel coordinates x,y are converted to map coordinates east,north.

184

12.15 Temporary Files

See G_setup_plot (A.3 Appendix C: Index to GIS Library (p. 445)) for the required coordinate
initialization procedure.

int east,north to x,y
G_plot_where_xy (double *east, double *north, int *x, int *y)

The map coordinates east,north are converted to pixel coordinates x,y.

See G_setup_plot (A.3 Appendix C: Index to GIS Library (p. 445)) for the required coordinate
initialization procedure.

int plot f(east1) to
f(east2)G_plot_fx (double (*f)(), double east1, double east2)

The function f(east) is plotted from east1 to east2. The function f(east) must return
the map northing coordinate associated with east.

See G_setup_plot (A.3 Appendix C: Index to GIS Library (p. 445)) for the required coordinate
initialization procedure.

12.15 Temporary Files

Often it is necessary for modules to use temporary files to store information that is only useful
during the module run. After the module finishes, the information in the temporary file is no
longer needed and the file is removed. Commonly it is required that temporary file names be
unique from invocation to invocation of the module. It would not be good for a fixed name like
”/tmp/mytempfile” to be used. If the module were run by two users at the same time, they would
use the same temporary file. The following routine generates temporary file names which are
unique within the module and across all GRASS programs.

char * returns a
temporary file
name

G_tempfile ()

This routine returns a pointer to a string containing a unique file name that can be
used as a temporary file within the module. Successive calls to G_tempfile() will
generate new names.
Only the file name is generated. The file itself is not created. To create the file,
the module must use standard UNIX functions which create and open files, e.g.,
creat() or fopen().
The programmer should take reasonable care to remove (unlink) the file before the
module exits. However, GRASS database management will eventually remove all

185

12 GIS Library

temporary files created by G_tempfile() that have been left behind by the modules
which created them.

Note. The temporary files are created in the GRASS database rather than under /tmp. This is
done for two reasons. The first is to increase the likelihood that enough disk is available for large
temporary files since /tmp may be a very small file system. The second is so that abandoned
temporary files can be automatically removed (but see the warning below).

Warning. The temporary files are named, in part, using the process id of the module. GRASS
database management will remove these files only if the module which created them is no longer
running. However, this feature has a subtle trap. Programs which create child processes (using
the UNIX fork()32 routine) should let the child call G_tempfile(). If the parent does it and then
exits, the child may find that GRASS has removed the temporary file since the process which
created it is no longer running.

12.16 Command Line Parsing

The following routines provide a standard mechanism for command line parsing. Use of the pro-
vided set of routines will standardize GRASS commands that expect command line arguments,
creating a family of GRASS modules that is easy for users to learn. As soon as a GRASS user
familiarizes himself with the general form of command line input as defined by the parser, it
will greatly simplify the necessity of remembering or at least guessing the required command
line arguments for any GRASS command. It is strongly recommended that GRASS program-
mers use this set of routines for all command line parsing. With their use, the programmer is
freed from the burden of generating user interface code for every command. The parser will
limit the programmer to a pre-defined look and feel, but limiting the interface is well worth the
shortened user learning curve.

12.16.1 Description

The GRASS parser is a collection of five subroutines which use two structures that are defined
in the GRASS ”gis.h” header file. These structures allow the programmer to define the options
and flags that make up the valid command line input of a GRASS command.

The parser routines behave in one of three ways:

(1) If no command line arguments are entered by the user, the parser searches for a completely
interactive version of the command. If the interactive version is found, control is passed over
to this version. If not, the parser will prompt the user for all programmer-defined options and
flags. This prompting conforms to the same standard for every GRASS command that uses the
parser routines.

(2) If command line arguments are entered but they are a subset of the options and flags that the
programmer has defined as required arguments, three things happen. The parser will pass an
32See also G_fork.

186

12.16 Command Line Parsing

error message to the user indicating which required options and/or flags were missing from the
command line, the parser will then display a complete usage message for that command, and
finally the parser cancels execution of the command.

(3) If all necessary options and flags are entered on the command line by the user, the parser
executes the command with the given options and flags.

12.16.2 Structures

The parser routines described below use two structures as defined in the GRASS ”gis.h” header
file.

This is a basic list of members of the Option and Flag structures. A comprehensive description
of all elements of these two structures and their possible values can be found in 12.16.5 Full
Structure Members Description (p. 194).

12.16.2.1 Option structure

These are the basic members of the Option structure.

struct Option *opt; /* to declare a command line option */

Structure Member Description of Member

opt->key Option name that user will use
opt->description Option description that is shown to the user
opt->type Variable type of the user’s answer to the option
opt->required Is this option required on the command line? (Boolean)

12.16.2.2 Flag structure

These are the basic members of the Flag structure.

struct Flag *flag; /* to declare a command line flag */

Structure Member Description of Member

flag->key Single letter used for flag name
flag->description Flag description that is shown to the user

187

12 GIS Library

12.16.3 Parser Routines

Associated with the parser are five routines that are automatically included in the GRASS
Gmakefile process. The Gmakefile process is documented in 11 Compiling and Installing
GRASS Modules (p. 69).

struct Option *returns Option
structure G_define_option ()

Allocates memory for the Option structure and returns a pointer to this memory (of
type struct Option *).

struct Flag *return Flag
structure G_define_flag ()

Allocates memory for the Flag structure and returns a pointer to this memory (of
type struct Flag *).

intparse command
line G_parser (int argc, char *argv[])

The command line parameters argv and the number of parameters argc from the
main() routine are passed directly to G_parser (). G_parser () accepts the com-
mand line input entered by the user, and parses this input according to the input
options and/or flags that were defined by the programmer.
G_parser () returns 0 if successful. If not successful, a usage statement is displayed
that describes the expected and/or required options and flags and a non-zero value
is returned.

intcommand line
help/usage

message
G_usage ()

Calls to G_usage () allow the programmer to print the usage message at any time.
This will explain the allowed and required command line input to the user. This de-
scription is given according to the programmer’s definitions for options and flags.
This function becomes useful when the user enters options and/or flags on the com-
mand line that are syntactically valid to the parser, but functionally invalid for the
command (e.g. an invalid file name.)
For example, the parser logic doesn’t directly support grouping options. If two
options be specified together or not at all, the parser must be told that these options

188

12.16 Command Line Parsing

are not required and the programmer must check that if one is specified the other
must be as well. If this additional check fails, then G_parser will succeed, but the
programmer can then call G_usage () to print the standard usage message and print
additional information about how the two options work together.

int turns off
interactive
capability

G_disable_interactive ()

When a user calls a command with no arguments on the command line, the parser
will enter its own standardized interactive session in which all flags and options
are presented to the user for input. A call to G_disable_interactive() disables the
parser’s interactive prompting.

Note: Displaying multiple answers default values (new in GRASS 5, see d.pan for example).

char *def[] = "One", "Two", "Last", NULL;
opt->multiple = YES;
opt->answers = def;
G_parser();

The programmer may not forget last NULL value.

12.16.4 Parser Programming Examples

The use of the parser in the programming process is demonstrated here. Both a basic step by
step example and full code example are presented.

12.16.4.1 Step by Step Use of the Parser

These are the four basic steps to follow to implement the use of the GRASS parser in a GRASS
command:

(1) Allocate memory for Flags and Options:

Flags and Options are pointers to structures allocated through the parser routines G_define_option
and G_define_flag as defined in 12.16.3 Parser Routines (p. 188).

#include ”gis.h” ; /* The standard GRASS include file */
struct Option *opt ; /* Establish an Option pointer for each

option */
struct Flag *flag ; /* Establish a Flag pointer for each option

*/

189

12 GIS Library

opt = G_define_option() ; /* Request a pointer to memory for
each option */
flag = G_define_flag() ; /* Request a pointer to memory for

each flag */

(2) Define members of Flag and Option structures:

The programmer should define the characteristics of each option and flag desired as outlined by
the following example:

opt->key = ”option”; /* The name of this option is ”option”.
*/
opt->description = ”Option test”; /* The option description

is ”Option test” */
opt->type = TYPE_STRING; /* The data type of the answer to the

option */
opt->required = YES; /* This option *is* required from the user

*/
flag->key = ’t’; /* Single letter name for flag */
flag->description = ”Flag test”; /* The flag description is

”Flag test” */

Note.There are more options defined later in 12.16.5.1 Complete Structure Members Table (p.
194).

(3) Call the parser:

int main(argc,argv) char *argv[]; /* command line args passed
into main() */
G_parser(argc,argv); /* Returns 0 if successful, non-zero otherwise

*/

(4) Extracting information from the parser structures:

fprintf(stdout, ”For the option 	 ”%s 	 ” you chose: <%s> 	 n”,
opt->description, opt->answer);
fprintf(stdout, ”The flag 	 ”-%s 	 ” is %s set. 	 n”, flag->key,

flag->answer ? ”” : ”not”);

(5) Running the example program

Once such a module has been compiled (for example to the default executable file a.out , exe-
cution will result in the following user interface scenarios. Lines that begin with # imply user
entered commands on the command line.

190

12.16 Command Line Parsing

a.out help

This is a standard user call for basic help information on the module. The command line options
(in this case, ”help”) are sent to the parser via G_parser. The parser recognizes the ”help”
command line option and returns a list of options and/or flags that are applicable for the specific
command. Note how the programmer provided option and flag information is captured in the
output.

a.out [-t] option=name

Flags:

-tFlag test

Parameters:

option Option test

Now the following command is executed:

a.out -t

This command line does not contain the required option. Note that the output provides this
information along with the standard usage message (as already shown above.)

Required parameter <option> not set (Option test).

Usage:

a.out[-t] option=name

Flags:

-t Flag test

Parameters:

option Option test

The following commands are correct and equivalent. The parser provides no error messages
and the module executes normally:

a.out option=Hello -t

a.out -t option=Hello

For the option ”Option test” you chose: Hello

The flag ”-t” is set.

191

12 GIS Library

If this specific command has no fully interactive version (a user interface that does not use the
parser), the parser will prompt for all programmer-defined options and/or flags.

User input is in italics, default answers are displayed in square brackets [].

a.out

OPTION: Option test

key: option

required: YES

enter option > Hello

You have chosen:

option=Hello

Is this correct? (y/n) [y] y

FLAG: Set the following flag?

Flag test? (y/n) [n] n

You chose: <Hello>

The flag is not set

12.16.4.2 Full Module Example

The following code demonstrates some of the basic capabilities of the parser. To compile this
code, create this Gmakefile and run the gmake command (see 11 Compiling and Installing
GRASS Modules (p. 69).

sample: sample.o

$(CC) $(LDFLAGS) -o $@ sample.o $(GISLIB)

The sample.c code follows. You might experiment with this code to familiarize yourself with
the parser.

Note. This example includes some of the advanced structure members described in 12.16.5.1
Complete Structure Members Table (p. 194).

#include ”gis.h”

main(argc , argv)

int argc ;

192

12.16 Command Line Parsing

char *argv ;

{

struct Option *opt ;

struct Option *coor ;

struct Flag *flag ;

double X , Y ;

int n ;

opt = G_define_option() ;

opt->key = ”debug” ;

opt->description = ”Debug level” ;

opt->type = TYPE_STRING ;

opt->required = NO ;

opt->answer = ”0” ;

coor = G_define_option() ;

coor->key = ”coordinate” ;

coor->key_desc = ”x,y” ;

coor->description = ”One or more coordinates” ;

coor->type = TYPE_STRING ;

coor->required = YES ;

coor->multiple = YES ;

/* Note that coor->answer is not given a default value. */

flag = G_define_flag() ;

flag->key = ’v’ ;

flag->description = ”Verbose execution” ;

/* Note that flag->answer is not given a default value. */

193

12 GIS Library

if (G_parser(argc , argv))

exit(-1);

fprintf(stdout, ”For the option - ”%s - ” you chose: <%s> - n”, opt->description, opt->answer);

fprintf(stdout, ”The flag - ”-%s - ” is: %s set - n”, flag->key, flag->answer ? ”” : ”not”);

fprintf(stdout, ”You specified the following coordinates: - n”);

for (n=0 ; coor->answers[n] != NULL ; n+=2)

{

G_scan_easting (coor->answers[n] , &X , G_projection());

G_scan_northing (coor->answers[n+1] , &Y , G_projection());

fprintf(stdout, ”%.31f,%.21f - n”, X , Y);

}

}

12.16.5 Full Structure Members Description

There are many members to the Option and Flag structures. The following tables and descrip-
tions summarize all defined members of both the Option and Flag structures.

An in-depth summary of the more complex structure members is presented in 12.16.5.2 Description
of Complex Structure Members (p. 196).

12.16.5.1 Complete Structure Members Table

struct Flag

structure
member

C type required default description and example

key char YES none Key char used on command line
flag->key = ’f’ ;

Description char * YES none String describing flag meaning
flag->description = ”run in fast
mode” ;

answer char NO NULL Default and parser-returned flag
states.

194

12.16 Command Line Parsing

struct Option

structure
member

C type required default description and example

key char * YES none Key word used on command line.
opt->key = ”map” ;

type int YES none Option type:
TYPE_STRING
TYPE_INTEGER
TYPE_DOUBLE
opt->type = TYPE_STRING ;

Description char * YES none String describing option
opt->description = ”Map name” ;

answer char * NO NULL Default and parser-returned answer
to an option.
opt->answer = ”defaultmap” ;

key_desc char * NO NULL Single word describing the key.
Commas in this string denote to the
parser that several
comma-separated arguments are
expected from the user as one
answer. For example, if a pair of
coordinates is desired, this element
might be defined as follows.
opt->key_desc = ”x,y” ;

structure
member

C type required default description and example

multiple int NO NO Indicates whether the user can
provide multiple answers or not.
YES and NO are defined in ”gis.h”
and should be used (NO is the
default.) Multiple is used in
conjunction with the answers
structure member below.
opt->multiple = NO ;

answers NO NULL Multiple parser-returned answers to
an option. N/A

required int NO NO Indicates whether user MUST
provide the option on the command
line. YES and NO are defined in
”gis.h” and should be used (NO is
the default.) opt->required = YES ;

options char * NO NULL Approved values or range of values.
opt->options = ”red,blue,white”
;For integers and doubles, the
following format is available:
opt->options = ”0-1000” ;

195

12 GIS Library

Gisprompt char * NO NULL Interactive prompt guidance. There
are three comma separated parts to
this argument which guide the use
of the standard GRASS file name
prompting routines.
opt->gisprompt = ”old,cell,raster” ;

Checker char
*()

NO NULL Routine to check the answer to an
option
m opt->checker = my_routine() ;

12.16.5.2 Description of Complex Structure Members

What follows are explanations of possibly confusing structure members. It is intended to clarify
and supplement the structures table above.

12.16.5.2.1 Answer member of the Flag and Option structures. The answer structure
member serves two functions for GRASS commands that use the parser.

(1) To set the default answer to an option:

If a default state is desired for a programmer-defined option, the programmer may define the
Option structure member ”answer” before calling G_parser in his module. After the G_parser
call, the answer member will hold this preset default value if the user did not enter an option
that has the default answer member value.

(2) To obtain the command-line answer to an option or flag: After a call to G_parser, the
answer member will contain one of two values:

(a) If the user provided an option, and answered this option on the command line, the default
value of the answer member (as described above) is replaced by the user’s input.

(b) If the user provided an option, but did not answer this option on the command line, the
default is not used. The user may use the default answer to an option by withholding mention of
the option on the command line. But if the user enters an option without an answer, the default
answer member value will be replaced and set to a NULL value by G_parser.

As an example, please review the use of answer members in the structures implemented in
12.16.4.2 Full Module Example (p. 192).

12.16.5.2.2 Multiple and Answers Members The functionality of the answers structure
member is reliant on the programmer’s definition of the multiple structure member. If the

196

12.16 Command Line Parsing

multiple member is set to NO, the answer member is used to obtain the answer to an option as
described above.

If the multiple structure member is set to YES, the programmer has told G_parser to capture
multiple answers. Multiple answers are separated by commas on the command line after an
option.

Note. G_parser does not recognize any character other than a comma to delimit multiple an-
swers.

After the programmer has set up an option to receive multiple answers, these the answers are
stored in the answers member of the Option structure. The answers member is an array that
contains each individual user-entered answer. The elements of this array are the type specified
by the programmer using the type member. The answers array contains however many comma-
delimited answers the user entered, followed (terminated) by a NULL array element.

For example, here is a sample definition of an Option using multiple and answers structure
members:

opt->key =”option” ;

opt->description = ”option example” ;

opt->type = TYPE_INTEGER ;

opt->required = NO ;

opt->multiple = YES ;

The above definition would ask the user for multiple integer answers to the option. If in response
to a routine that contained the above code, the user entered ”option=1,3,8,15” on the command
line, the answers array would contain the following values:

answers[0] = = 1

answers[1] = = 3

answers[2] = = 8

answers[3] = = 15

answers[4] = = NULL

12.16.5.2.3 key_desc Member The key_desc structure member is used to define the format
of a single command line answer to an option. A programmer may wish to ask for one answer
to an option, but this answer may not be a single argument of a type set by the type structure

197

12 GIS Library

member. If the programmer wants the user to enter a coordinate, for example, the programmer
might define an Option as follows:

opt->key =”coordinate” ;

opt->description = ”Specified Coordinate” ;

opt->type = TYPE_INTEGER ;

opt->required = NO ;

opt->key_desc = ”x,y”

opt->multiple = NO ;

The answer to this option would not be stored in the answer member, but in the answers member.
If the user entered ”coordinate=112,225” on the command line in response to a routine that
contains the above option definition, the answers array would have the following values after
the call to G_parser:

answers[0] = = 112

answers[1] = = 225

answers[2] = = NULL

Note that ”coordinate=112” would not be valid, as it does not contain both components of an
answer as defined by the key_desc structure member.

If the multiple structure member were set to YES instead of NO in the example above, the
answers are stored sequentially in the answers member. For example, if the user wanted to enter
the coordinates (112,225), (142,155), and (43,201), his response on the command line would be
”coordinate=112,225,142,155,43,201”. Note that G_parser recognizes only a comma for both
the key_desc member, and for multiple answers.

The answers array would have the following values after a call to G_parser:

answers[0] = = 112 answers[1] = = 225

answers[2] = = 142 answers[3] = = 155

answers[4] = = 43 answers[5] = = 201

answers[6] = = NULL

Note. In this case as well, neither ”coordinate=112” nor ”coordinate=112,225,142” would be
valid command line arguments, as they do not contain even pairs of coordinates. Each answer’s
format (as described by the key_desc member) must be fulfilled completely.

198

12.16 Command Line Parsing

The overall function of the key_desc and multiple structure members is very similar. The
key_desc member is used to specify the number of required components of a single option
answer (e.g. a multi-valued coordinate.) The multiple member tells G_parser to ask the user
for multiple instances of the compound answer as defined by the format in the key_desc struc-
ture member.

Another function of the key_desc structure member is to explain to the user the type of infor-
mation expected as an answer. The coordinate example is explained above.

The usage message that is displayed by G_parser in case of an error, or by

G_usage on programmer demand, is shown below. The Option ”option” for the command a.out
does not have its key_desc structure member defined.

Usage:

a.out option=name

The use of ”name” is a G_parser standard. If the programmer defines the key_desc structure
member before a call to G_parser, the value of the key_desc member replaces ”name”. Thus,
if the key_desc member is set to ”x,y” as was used in an example above, the following usage
message would be displayed:

Usage:

a.out option=x,y

The key_desc structure member can be used by the programmer to clarify the usage message as
well as specify single or multiple required components of a single option answer.

12.16.5.2.4 gisprompt Member The gisprompt Option structure item requires a bit more
description. The three comma-separated

(no spaces allowed) sub-arguments are defined as follows:

First argument:

”old” results in a call to the GRASS library subroutine G_ask_old, ”new” to G_ask_new, ”any”
to G_ask_any, and ”mapset” to G_ask_in_mapset.

Second argument:

This is identical to the ”element” argument in the above subroutine calls. It specifies a directory
inside the mapset that may contain the user’s response.

Third argument:

Identical to the ”prompt” argument in the above subroutine calls. This is a string presented to
the user that describes the type of data element being requested.

199

12 GIS Library

Here are two examples:

gisprompt arguments Resulting call

”new,cell,raster” G_ask_new(””, buffer, ”cell”, ”raster”)

”old,dig,vector” G_ask_old(””, buffer, ”dig”, ”vector”)

12.16.6 Common Questions

”How is automatic prompting turned off?”

GRASS 4.0 introduced a new method for driving GRASS interactive and non-interactive mod-
ules as described in 11 Compiling and Installing GRASS Programs. Here is a short overview.

For most modules a user runs a front-end module out of the GRASS bin directory which in
turn looks for the existence of interactive and non-interactive versions of the module. If an
interactive version exists and the user provided no command line arguments, then that version
is executed.

In such a situation, the parser’s default interaction will never be seen by the user. A programmer
using the parser is able to avoid the front-end’s default search for a fully interactive version of
the command by placing a call to G_disable_interactive before calling G_parser (see 12.16.3
Parser Routines (p. 188) for details.)

”Can the user mix options and flags?”

Yes. Options and flags can be given in any order.

”In what order does the parser present options and flags?”

Flags and options are presented by the usage message in the order that the programmer defines
them using calls to G_define_option and G_define_flag .

”How does a programmer query for coordinates?”

For any user input that requires a set of arguments (like a pair of map coordinates,) the pro-
grammer specifies the number of arguments in the key_desc member of the Option structure.
For example, if opt->key_desc was set to ”x,y”, the parser will require that the user enter a
pair of arguments separated only by a comma. See the source code for the GRASS commands
r.drain or r.cost for examples.

”Is a user required to use full option names?”

No! Users are required to type in only as many characters of an option name as is necessary
to make the option choice unambiguous. If, for example, there are two options, ”input=” and
”output=”, the following would be valid command line arguments:

#command i=map1 o=map2

200

12.17 String Manipulation Functions

command in=map1 out=map2

”Are options standardized at all?”

Yes. There are a few conventions. Options which identify a single input map are usually
”map=”, not ”raster=” or ”vector=”. In the case of an input and output map the convention is:
”input=xx output=yy”. By passing the ’help’ option to existing GRASS commands, it is likely
that you will find other conventions. The desire is to make it as easy as possible for the user to
remember (or guess correctly) what the command line syntax is for a given command.

12.17 String Manipulation Functions

This section describes some routines which perform string manipulation. Strings have the usual
C meaning: a NULL terminated array of characters.

These next 3 routines copy characters from one string to another.

char * copy strings
G_strcpy (char *dst, char *src)

Copies the src string to dst up to and including the NULL which terminates the src
string. Returns dst.

char * copy strings
G_strncpy (char *dst, char *src, int n)

Copies at most n characters from the src string to dst. If src contains less than n
characters, then only those characters are copied. A NULL byte is added at the end
of dst. This implies that dst should be at least n+1 bytes long. Returns dst. Note.
This routine varies from the UNIX strncpy() in that G_strncpy() ensures that dst
is NULL terminated, while strncpy() does not.

char * concatenate
stringsG_strcat (char *dst, char *src)

Appends the src string to the end of the dst string, which is then NULL terminated.
Returns dst.

These next 3 routines remove unwanted white space from a single string.

201

12 GIS Library

char * remove
unnecessary
white space

G_squeeze (char *s)

Leading and trailing white space is removed from the string s and internal white
space which is more than one character is reduced to a single space character. White
space here means spaces, tabs, linefeeds, newlines, and formfeeds. Returns s.

voidremove lead-
ing/training
white space

G_strip (char *s)

Leading and trailing white space is removed from the string s. White space here
means only spaces and tabs. There is no return value.

char *
G_chop (char *s)

Chop leading and trailing white spaces: space, - f, - n, - r, - t, - v - returns pointer to
string

The next routines replaces character(s) from string.

char *replace
character(s) G_strchg (char *bug, char character, char new)

Replace all occurencies of character in string bug with new. Returns changed string

This next routine copies a string to allocated memory.

char *copy string to
allocated

memory
G_store (char *s)

This routine allocates enough memory to hold the string s, copies s to the allocated
memory, and returns a pointer to the allocated memory.

The next 2 routines convert between upper and lower case.

char *convert string
to lower case G_tolcase (char *s)

202

12.17 String Manipulation Functions

Upper case letters in the string s are converted to their lower case equivalent. Re-
turns s.

char * convert string
to upper caseG_toucase (char *s)

Lower case letters in the string s are converted to their upper case equivalent. Re-
turns s.

And finally a routine which gives a printable version of control characters.

char * printable
version of
control
character

G_unctrl (unsigned char c)

This routine returns a pointer to a string which contains an English-like represen-
tation for the character c. This is useful for nonprinting characters, such as control
characters. Control characters are represented by ctrl-C, e.g., control A is rep-
resented by ctrl-A. 0177 is represented by DEL/RUB. Normal characters remain
unchanged.

This routine is useful in combination with G_intr_char for printing the user’s interrupt charac-
ter:

char G_intr_char();
char *G_unctrl();
fprintf(stdout, ”Your interrupt character is %s 	 n”, G_unctrl(G_intr_char()));

Note. G_unctrl() uses a hidden static buffer which is overwritten from call to call.

FOLLOWING new FUNCTIONS need to be merged into the text:

int trim
G_trim_decimal (char *buf)

this routine remove trailing zeros from decimal number for example: 23.45000
would come back as 23.45

char * delimiter
G_index (str, delim)

203

12 GIS Library

position of delimiter

char *???
G_rindex (str, delim)

???

int
G_strcasecmp(char *a, char *b

string compare ignoring case (upper or lower) returns: -1 if a<b
0 if a==b
1 if a>b

char *
G_strstr(char *mainString, char *subString)

Return a pointer to the first occurrence of subString in mainString, or NULL if no
occurrences are found

char *
G_strdup(char *string)

Return a pointer to a string that is a duplicate of the string given to G_strdup. The
duplicate is created using malloc. If unable to allocate the required space, NULL
is returned.

12.18 Enhanced UNIX Routines

A number of useful UNIX library routines have side effects which are sometimes undesirable.
The routines here provide the same functions as their corresponding UNIX routine, but with
different side effects.

12.18.1 Running in the Background

The standard UNIX fork() routine creates a child process which is a copy of the parent process.
The fork() routine is useful for placing a module into the background. For example, a module

204

12.18 Enhanced UNIX Routines

that gathers input from the user interactively, but knows that the processing will take a long
time, might want to run in the background after gathering all the input. It would fork() to create
a child process, the parent would exit() allowing the child to continue in the background, and
the user could then do other processing.

However, there is a subtle problem with this logic. The fork() routine does not protect child
processes from keyboard interrupts even if the parent is no longer running. Keyboard interrupts
will also kill background processes that do not protect themselves.33 Thus a module which puts
itself in the background may never finish if the user interrupts another module which is running
at the keyboard.

The solution is to fork() but also put the child process in a process group which is different
from the keyboard process group. G_fork() does this.

pid_t create a
protected child
process

G_fork ()

This routine creates a child process by calling the UNIX fork() routine. It also
changes the process group for the child so that interrupts from the keyboard do not
reach the child. It does not cause the parent to exit().
G_fork() returns what fork() returns: -1 if fork() failed; otherwise 0 to the child,
and the process id of the new child to the parent.
Note. Interrupts are still active for the child. Interrupts sent using the kill command,
for example, will interrupt the child. It is simply that keyboard-generated interrupts
are not sent to the child.

12.18.2 Partially Interruptible System Call

The UNIX system() call allows one program, the parent, to execute another UNIX command
or module as a child process, wait for that process to complete, and then continue. The problem
addressed here concerns interrupts. During the standard system() call, the child process inherits
its responses to interrupts from the parent. This means that if the parent is ignoring interrupts,
the child will ignore them as well. If the parent is terminated by an interrupt, the child will be
also.

However, in some cases, this may not be the desired effect. In a menu environment where
the parent activates menu choices by running commands using the system() call, it would be
nice if the user could interrupt the command, but not terminate the menu module itself. The
G_system() call allows this.

int run a shell level
command33Programmers who use /bin/sh know that programs run in the background (using & on the command line) are not

automatically protected from keyboard interrupts. To protect a command that is run in the background, /bin/sh
users must do nohup command &. Programmers who use the /bin/csh (or other variants) do not know, or forget
that the C-shell automatically protects background processes from keyboard interrupts.

205

12 GIS Library

G_system (command)

The shell level command is executed. Interrupt signals for the parent module are
ignored during the call. Interrupt signals for the command are enabled. The inter-
rupt signals for the parent are restored to their previous settings upon return.
G_system() returns the same value as system(), which is essentially the exit status
of the command. See UNIX manual system(1) for details.

12.18.3 ENDIAN test

To test if the user’s machine is little or big ENDIAN, the following function is provided:

inttest little
ENDIAN G_is_little_endian()

Test if machine is little or big endian.
Returns:
1 little endian
0 big endian

12.19 Unix Socket Functions

The following provide a simplified interface for interprocess communication via Unix sockets.
The caller need only be concerned with the path to the socket file and the various file descriptors
for socket connections. The caller does not need to worry about handling socket structures –
which, unlike internet sockets, have little utility once a file descriptor has been opened on a
connection. All socket functions in the GIS library have a G_sock prefix. One should keep in
mind that unix sockets connections can both be read from and written to. Also, it is possible
for calls to read() and write() to read or write fewer bytes than specified. Hence, looping calls
may be required to read or write all of the data. The read() will still normally block if there
is nothing to read, so a zero byte return value typically means the connection has been closed.
The write() function typically returns immediately. 34

char *makes full
socket path G_sock_get_fname (char *name)

Takes a simple name for a communication channel and builds the full path for a
sockets file with that name. The path as of this writing (2000-02-18) is located
in the temporary directory for the user’s current mapset (although this will likely
change). A NULL pointer is returned if the function fails for some reason. The

34see W. Richard Stevens. 1997. UNIX network programming: Volume 1 2 .0/ edition. Prentice Hall

206

12.19 Unix Socket Functions

caller is responsible for freeing the memory of the returned string when it is no
longer needed.

int does the socket
existG_sock_exists (char *name)

Takes the full path to a unix socket; determines if the file exists; and if the file exists
whether it is a socket file or not. Returns a non-zero value if the file exists and is a
socket file. Otherwise it returns zero.

int binds the socket
G_sock_bind (char *name)

Takes the full path to a unix socket and attempts to bind a file descriptor to the path
name. If successful it will return the file descriptor. Otherwise, it returns -1. The
socket file must not already exist. If it does, this function will fail and set the global
errno to EADDRINUSE. Other error numbers may be set if the call to bind() fails.
Server programs wishing to bind a socket should test if the socket file they wish to
use already exists. And, if so, they may try to connect to the socket to see if it is
in use. If it is not in use, such programs may then call unlink() or remove() to
delete the file before calling G_sock_bind(). It is important that server processes
do not just delete existing socket files without testing the connection. Doing so
may make another server process unreachable (i.e. you will have hijacked the other
server’s communication channel). Server processes must call G_sock_bind() prior
to calling G_sock_listen() and G_sock_accept().

int listen on a
socketG_sock_listen (int fd, unsigned int queue)

Takes the file descriptor returned by a successful call to G_sock_bind() and the
length of the the listen queue. A successful call will return 0, while a failed call
will return -1. The global errno will contain the error number corresponding to the
reason for the failure. The queue length should never be zero. Some systems may
interpret this to mean that no connections should be queued. Other systems may
add a fudge factor to the queue length that the caller specifies. Servers that don’t
want additional connections queued should close() the listening file descriptor after
a successful call to G_sock_accept(). This function is a simple wrapper around the
system listen() function.

int accept a
connection on
the listening
socket

G_sock_accept (int fd)

207

12 GIS Library

Takes the file descriptor returned by a successful call to G_sock_bind(), for which
a successful call to G_sock_listen() has also been made, and waits for an incoming
connection. When a connection arrives, the file descriptor for the connection is
returned. This function normally blocks indefinitely. However, an interrupt like
SIGINT may cause this function to return without a valid connection. In this case,
the return value will be -1 and the global error number will be set to EINTR.
Servers should handle this possibility by calling G_sock_accept() again. A typical
server might have a call to fork() after a successful return from G_sock_accept().
A server might also use select() to see if an a connection is ready prior to calling
G_sock_accept(). This function is a simple wrapper around the system’s accept()
function, with the second and third arguments being NULL.

intmake a
connection to a
server process

G_sock_connect (char *name)

Takes the full path to a socket file and attempts to make a connection to a server
listening for connections. If successful, the file descriptor for the socket connection
is returned. Otherwise, -1 is returned and the global errno may be set. This func-
tion and G_sock_get_fname() are the only functions a client program really needs
to worry about. If the caller wants to be sure that the global error number was set
from an unsuccessful call to this function, she should zero errno prior to the call.
Failures due to a non-existent socket file or a path name that exceeds system limits,
will not change the global error number.

12.19.1 Trivial Socket Server Example

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include "gis.h"

int main (int argc, char *argv[])
{

int listenfd, rwfd;
char *path;
pid_t pid;

/* Path is built using server’s name */
if (NULL == (path = G_sock_get_fname (argv[0])))

exit (EXIT_FAILURE);

/* Make sure another instance isn’t running */
if (G_sock_exists (path))
{

if ((listenfd = G_sock_connect (path)) != -1)
{

close (listenfd);

208

12.19 Unix Socket Functions

exit (EXIT_FAILURE);
}
remove (path);

}

/* Bind the socket */
if ((listenfd = G_sock_bind (path)) < 0)

exit (EXIT_FAILURE);

/* Begin listening on the socket */
if (G_sock_listen (listenfd, 1) != 0)

exit (EXIT_FAILURE);

/* Loop forever waiting for connections */
for (;;)
{

if ((rwfd = G_sock_accept (listenfd)) < 0)
{

if (errno == EINTR)
continue;

}
else

exit (EXIT_FAILURE);

/* Fork connection */
if ((pid = fork()) == 0)
{

char c;
/* child closes listenfd */
close (listenfd);
while (read (rwfd, &c, 1) > 0)

write (rwfd, &c, 1);
close (rwfd);
return 0;

}
else if (pid > 0)
{

/* parent closes rwfd
* a well behaved server would limit
* the number of forks.
*/
close (rwfd);

}
else

exit (EXIT_FAILURE);

}
G_free (path);
return 0;

}

209

12 GIS Library

12.20 Miscellaneous

A number of general purpose routines have been provided.

char *current date
and time G_date ()

Returns a pointer to a string which is the current date and time. The format is the
same as that produced by the UNIX date command.

char *get a line of
input (detect

ctrl-z)
G_gets (char *buf)

This routine does a gets () from stdin into buf. It exits if end-of-file is detected. If
stdin is a tty (i.e., not a pipe or redirected) then ctrl-z is detected. Returns 1 if the
read was successful, or 0 if ctrl-z was entered.

Note. This is very useful for allowing a module to reprompt when a module is restarted after
being stopped with a ctrl-z. If this routine returns 0, then the calling module should reprint a
prompt and call G_gets () again. For example:

char buf[1024];
do
fprintf(stdout, ”Enter some input: ”) ;
while (! G_gets(buf)) ;

char *user’s home
directory G_home ()

Returns a pointer to a string which is the full path name of the user’s home directory.

charreturn interrupt
char G_intr_char ()

This routine returns the user’s keyboard interrupt character. This is the character
that generates the SIGINT signal from the keyboard.

210

12.20 Miscellaneous

See also G_unctr for converting this character to a printable format.

intprint percent
complete
messages

G_percent (int n, int total, int incr)

This routine prints a percentage complete message to stderr. The percentage com-
plete is (n/ total)*100, and these are printed only for each incr percentage. This is
perhaps best explained by example:

include <stdio.h>
int row;
int nrows;
nrows = 1352; /* 1352 is not a special value -
example only */
fprintf (stderr, ”Percent complete: ”);
for (row = 0; row < nrows; row++)
G_percent (row, nrows, 10);

This will print completion messages at 10% increments; i.e., 10%, 20%, 30%, etc.,
up to 100%. Each message does not appear on a new line, but rather erases the
previous message. After 100%, a new line is printed.

char * return module
nameG_program_name ()

Routine returns the name of the module as set by the call to G_gisinit.

char * user’s name
G_whoami ()

Returns a pointer to a string which is the user’s login name.

int ask a yes/no
questionG_yes (char *question, int default)

This routine prints a question to the user, and expects the user to respond either
yes or no. (Invalid responses are rejected and the process is repeated until the user
answers yes or no.)
The default indicates what the RETURN key alone should mean. A default of 1
indicates that RETURN means yes, 0 indicates that RETURN means no, and -1
indicates that RETURN alone is not a valid response.
The question will be appended with ”(y/n) ”, and, if default is not -1, with ”[y] ”
or ”[n] ”, depending on the default.
G_yes () returns 1 if the user said yes, and 0 if the user said no.

211

12 GIS Library

12.21 GIS Library Data Structures

Some of the data structures, defined in the ”gis.h” header file and used by routines in this library,
are described in the sections below.

12.21.1 struct Cell_head

The raster header data structure is used for two purposes. It is used for raster header information
for map layers. It also used to hold region values. The structure is:

struct Cell_head
{
int format; /* number of bytes per cell */
int compressed; /* compressed(1) or not compressed(0) */
int rows, cols; /* number of rows and columns */
int proj; /* projection */
int zone; /* zone */
double ew_res; /* east-west resolution */
double ns_res; /* north-south resolution */
double north; /* northern edge */
double south; /* southern edge */
double east; /* eastern edge */
double west; /* western edge */
};

The format and compressed fields apply only to raster headers. The format field describes the
number of bytes per raster data value and the compressed field indicates if the raster file is
compressed or not. The other fields apply both to raster headers and regions. The geographic
boundaries are described by north, south, east and west. The grid resolution is described by
ew_res and ns_res. The cartographic projection is described by proj and the related zone for the
projection by zone. The rows and cols indicate the number of rows and columns in the raster
file, or in the region. See 5.3 Raster Header Format (p. 29) for more information about raster
headers, and 9.1 Region (p. 61) for more information about regions.

The routines described in 12.10.1 Raster Header File (p. 113) use this structure.

12.21.2 struct Categories

The Categories structure contains a title for the map layer, the largest category in the map layer,
an automatic label generation rule for missing labels, and a list of category labels.

The structure is declared: struct Categories .

This structure should be accessed using the routines described in 12.10.2 Raster Category File
(p. 114).

212

12.21 GIS Library Data Structures

12.21.3 struct Colors

The color data structure holds red, green, and blue color intensities for raster categories. The
structure has become so complicated that it will not be described in this manual.

The structure is declared: struct Colors .

The routines described in 12.10.3 Raster Color Table (p. 116) must be used to store and retrieve
color information using this structure.

12.21.4 struct History

The History structure is used to document raster files. The information contained here is for the
user. It is not used in any operational way by GRASS. The structure is:

define MAXEDLINES 50
define RECORD_LEN 80
struct History
{
char mapid[RECORD_LEN];
char title[RECORD_LEN];
char mapset[RECORD_LEN];
char creator[RECORD_LEN];
char maptype[RECORD_LEN];
char datsrc_1[RECORD_LEN];
char datsrc_2[RECORD_LEN];
char keywrd[RECORD_LEN];
int edlinecnt;
char edhist[MAXEDLINES][RECORD_LEN];
};

The mapid and mapset are the raster file name and mapset, title is the raster file title, creator
is the user who created the file, maptype is the map type (which should always be ”raster”),
datasrc_1 and datasrc_2 describe the original data source, keywrd is a one-line data description
and edhist contains edlinecnt lines of user comments.

The routines described in 12.10.3.4.1 Raster History File (p. 121) use this structure. However,
there is very little support for manipulating the contents of this structure. The programmer must
manipulate the contents directly.

Note. Some of the information in this structure is not meaningful. For example, if the raster
file is renamed, or copied into another mapset, the mapid and mapset will no longer be correct.
Also the title does not reflect the true raster file title. The true title is maintained in the category
file.

Warning. This structure has remained unchanged since the inception of GRASS. There is a
good possibility that it will be changed or eliminated in future releases.

213

12 GIS Library

12.21.5 struct Range

The Range structure contains the minimum and maximum values which occur in a raster file.

The structure is declared: struct Range .

The routines described in 12.10.4 Raster Range File (p. 122) should be used to access this
structure.

12.22 Loading the GIS Library

The library is loaded by specifying $(GISLIB) in the Gmakefile. The following example is a
complete Gmakefile which compiles code that uses this library:

Gmakefile for $(GISLIB)
OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB)
$(GISLIB): # in case the library changes

See 11 Compiling and Installing GRASS Modules (p. 69) for a complete discussion of Gmake-
files.

12.23 Timestamp functions

#include "gis.h"

This structure is defined in gis.h, but there should be no reason to access its elements directly:

struct TimeStamp
DateTime dt[2]; /* two datetimes */
int count;
;

Using the G_*_timestamp routines reads/writes a timestamp file in the cell_misc/rastername or
dig_misc/vectorname mapset element.

A TimeStamp can be one DateTime, or two DateTimes representing a range. When preparing
to write a TimeStamp, the programmer should use one of:

G_set_timestamp to set a single DateTime

G_set_timestamp_range to set two DateTimes.

214

12.23 Timestamp functions

int Read raster
timestampG_read_raster_timestamp (char *name, char *mapset, struct TimeStamp *ts)

Returns 1 on success. 0 or negative on error.

int Read vector
timestampG_read_vector_timestamp (char *name, char *mapset, struct TimeStamp *ts)

Returns 1 on success. 0 or negative on error.

int copy
TimeStamp into
Datetimes

G_get_timestamps (struct TimeStamp *ts, DateTime *dt1, DateTime *dt2, int *count)

Use to copy the TimeStamp information into Datetimes, so the members of struct
TimeStamp shouldn’t be accessed directly.
count=0 means no datetimes were copied
count=1 means 1 datetime was copied into dt1
count=2 means 2 datetimes were copied

int
G_init_timestamp (struct TimeStamp *ts)

Sets ts->count = 0, to indicate no valid DateTimes are in TimeStamp.

int
G_set_timestamp (struct TimeStamp *ts, DateTime *dt)

Copies a single DateTime to a TimeStamp in preparation for writing. (overwrites
any existing information in TimeStamp)

int
G_set_timestamp_range (struct TimeStamp *ts, DateTime *dt1, DateTime *dt2)

Copies two DateTimes (a range) to a TimeStamp in preparation for writing. (over-
writes any existing information in TimeStamp)

215

12 GIS Library

int
G_write_raster_timestamp (char *name, struct TimeStamp *ts)

Returns:
1 on success.
-1 error - can’t create timestamp file
-2 error - invalid datetime in ts

int
G_write_vector_timestamp (char *name, struct TimeStamp *ts)

Returns:
1 on success.
-1 error - can’t create timestamp file
-2 error - invalid datetime in ts

int
G_format_timestamp (struct TimeStamp *ts, char *buf)

Returns:
1 on success
-1 error

int
G_scan_timestamp (struct TimeStamp *ts, char *buf)

Returns:
1 on success
-1 error

int
G_remove_raster_timestamp (char *name)

Only timestamp files in current mapset can be removed
Returns:
0 if no file
1 if successful
-1 on fail

216

12.24 GRASS GIS Library Overview

int
G_remove_vector_timestamp (char *name)

Only timestamp files in current mapset can be removed
Returns:
0 if no file
1 if successful
-1 on fail

int read grid3
timestampG_read_grid3_timestamp (char *name,char *mapset, struct TimeStamp *ts)

Returns 1 on success. 0 or negative on error.

int remove grid3
timestampG_remove_grid3_timestamp (char *name)

Only timestamp files in current mapset can be removed
Returns:
0 if no file
1 if successful
-1 on fail

int write grid3
timestampG_write_grid3_timestamp (char *name, struct TimeStamp *ts)

Returns:
1 on success.
-1 error - can’t create timestamp file
-2 error - invalid datetime in ts

See 23 DateTime Library (p. 349) for a complete discussion of GRASS datetime routines.

12.24 GRASS GIS Library Overview

Contents of directory src/libes/:

217

12 GIS Library

D : display library
bitmap : bitmap library for X Window Bitmaps
btree : binary tree library
bwidget : tcl/tk extra library
coorcnv : coordinate conversion and datum support library
datetime : DateTime library
dbmi : database management interface database drivers
dig_atts : library to read and write from attribute files
digitizer : raw library for general digitizer support
display : library for CELL driver
dlg : library to manage DLG files
dspf : G3D display files library
g3d : G3D raster volume library
geom : geometrical calculations, long-integer arithmetics, delaunay

triangulation, planesweep algorithm, simulation of simplicity
and others

gis : main GRASS library
gmath : generic mathematical functions (matrix, fft etc.) added by

D D Gray (later to be extended, BLAS/LAPACK library)
ibtree : integer clone of binary tree library (btree)
icon : icon library (required for PS/Paint icons, read, write,

manipulate icons)
image3 : extra imagery library
imagery : imagery library
libimage : image library required for SG3d/Iris, saving images in SGIs

rgb-format
linkm : linked list memory manager
lock : locking mechanism for GRASS monitors and files
ogsf : ported gsurf library (required for NVIZ)
proj : PROJ4.4.x projection library
raster : GRASS raster library
rowio : row in/out library
rst_gmsl : library for interpolation with regularized splines with tension
segment : segment library
unused : maybe treasures here?
vask : Curses management library
vect32 : GRASS vector library
vect32_64 : new approach for a 32/64bit GRASS vector library (to be

integrated in vect32)

218

13 Vector Library

13.1 Introduction to Vector Library

The Vector Library provides the GRASS programmer with routines to process the binary vector
files. It is assumed that the reader has read 4 Database Structure (p. 17) for a general description
of GRASS databases, and 6 Vector Maps (p. 41) for details about vector file formats in GRASS.

The routines in the Vector Library are presented in functional groupings, rather than in alpha-
betical order. The order of presentation will, it is hoped, provide a better understanding of how
the library is to be used, as well as show the interrelationships among the various routines. Note
that a good way to understand how to use these routines is to look at the source code for GRASS
modules which use them.1

Note. All routines and global variables in this library, documented or undocumented, start
with one of the following prefixes Vect_ or V1_ or V2_ or dig_.2 To avoid name conflicts,
programmers should not create variables or routines in their own modules which use this prefix.3

An alphabetic index is provided in A.4 Appendix D: Index to Vector Library (p. 447).

13.1.1 Include Files

The following file contains definitions and structures required by some of the routines in this
library. The programmer should therefore include this file in any code that uses this library:4 .

#include ”Vect.h”

13.1.2 Vector Arc Types

A complete discussion of GRASS vector terminology can be found in 6.1 What is a Vector Map
Layer? (p. 41) and the reader should review that section. Briefly, vector data are stored as arcs
representing linear, area, or point features. These arc types are coded as LINE, AREA, and DOT

1Some of these programs are v.in.ascii, v.out.ascii, v.to.rast, d.vect, p.map, and v.patch.
2All names beginning with V#_ (where # is any primary number) are also reserved for future use.
3Warning. There are also four additional global variables and/or routines which do NOT begin with these prefixes:

debugf, Lines_In_Memory, Mem_Line_Ptr, and Mem_curr_position.
4The GRASS compilation process, described in 11 Compiling and Installing GRASS Modules (p. 69), automati-

cally tells the C compiler how to find this and other GRASS header files. But also see 13.9 Loading the Vector
Library (p. 230)

219

13 Vector Library

respectively, (and are # defined in the file ”dig_defines.h”, which is automatically included by
the file ”Vect.h”).

13.1.3 Levels of Access

There are two levels of read access to these vector files:

Level One provides simple access to the arc information contained in the vector files. There is
no access to category or topology information at this level.5

Level Two provides full access to all the information contained in the vector file and its support
files, including line, category, node, and area information. This level requires more from the
programmer, more memory, and longer startup time.6

Note. Higher levels of access are planned, so when checking success return codes for a partic-
ular level of access (when calling Vect_open_old() for example), the programmer should use >
= instead of = = for compatibility with future releases.

13.2 Changes in 4.0 from 3.0

[GRASS 5: Can we remove this or shorten?]

The 4.0 Vector Library changed significantly from the Dig Library used with GRASS 3.1.
Below is an overview of why the changes were made, and how to module using the new Vect
Library.

13.2.1 Problem

The Digit Library was a collage of subroutines created for developing the map development
programs. Few of these subroutines were actually designed as a user access library. They
required individuals to assume too much responsibility and control over what happened to the
data file. Thus when it came time to change vector data file formats for GRASS 4.0, many
modules also required modification. By using the FILE * structure as the tag for files, there was
no means of expansion since the FILE * structure is not modifiable by GRASS. For example,
there was no way to open supporting files since all that was passed in to dig_init() was a FILE
* which had no file name associated with it.

The two different access levels for 3.0 vector files provided very different ways of calling the
library; they offered little consistency for the user.

5The category information is available through the dig_att library, but there are no data structures to link them to
the spatial features at this level.

6The routines in this library which process arcs are named using the word line. They should be named using the
word arc instead. Since that would require modifying a lot of existing code, the names have not been changed.

220

13.2 Changes in 4.0 from 3.0

The Digit Library was originally designed to only have one file open for read or write at a
time. Although it was possible in some cases to get around this, one restriction was the global
head structure. Since there was only one instance of this, there could only be one copy of that
information, and thus, only one open vector file.

13.2.2 Solution

The solution to these problems was to design a new user library as an interface to the vec-
tor data files. This new library was designed to provide a simple consistent interface, which
hides as much of the details of the data format as possible. It also can be extended for future
enhancements without the need to change existing programs.

13.2.3 Approach

A new [new in GRASS 4.x] library VECTLIB has been created. It provides routines for open-
ing, closing, reading, and writing vector files, as well as several support functions. The Digit
Library has been removed, so that all existing modules will have to be converted to use the
new library. Those routines that existed in the Digit Library and were not affected by these
changes continue to exist in unmodified form, and are now included in the VECTLIB. Most of
the commonly used routines have been discarded, and replaced by the new Vector routines.

The token that is used to identify each map is the Map_info structure. This structure was used
by level two functions in GRASS 3.1. It maintains all information about an individual open file.
This structure must be passed to most Vector subroutines. The head structure has gone away,
as has the global instance of it which was also called head. All modules which used this global
structure must now create their own local version of it. The structure that replaced struct head
is struct dig_head.

There are still two levels of interface to the vector files (future releases may include more).
Level one provides access only to arc (i.e. polyline) information and to the type of line (AREA,
LINE, DOT). Level two provides access to polygons (areas), attributes, and network topology.
There is now only one subroutine to open a file for read, Vect_open_old() and one for write,
Vect_open_new(). Vect_open_old() attempts to open a vector file at the highest possible level
of access. It will return the number of the level at which it opened. Vect_open_new() always
opens at level 1 only. If you require that a file be opened at a lower level (e.g. one), you can call
the routine Vect_set_open_level(1); Vect_open_old() will then either open at level one or fail.
If you instead require the highest level access possible, you should not use Vect_set_open_level(
), but instead check the return value of Vect_open_old() to make sure it is greater than or equal
to the lowest level at which you need access. This allows for future levels to work without need
for module change.

13.2.4 Implementation

There are two macros set up for use in the Gmakefile to support the Vector library:

221

13 Vector Library

EXTRA_CFLAGS = $(VECT_INCLUDE)

must exist in the Gmakefile for any module which uses the Vector library. NOTE: GRASS 3.1
required the line -I$(DIG_INCLUDE); do NOT use -I with VECT_INCLUDE.

$(VECTLIB)

is to be used on the link statement to include the vector library.7 This basically replaces the
$(DIGLIB) macro from 3.1. Currently this macro represents two different libraries which are
in directories: src/mapdev/Vlib and src/mapdev/diglib. These will probably change in the future
and are given only for aid in looking up include files or functions.

The basic format of a module that reads a vector file is:

#include ”Vect.h” /* new include file */
struct Map_info Map; /* Map info */
struct line_pnts *Points; /* Poly-Line data */
G_gisinit (argv[0]); /* init GIS lib */
if (0 > Vect_open_old (&Map, name, mapset)) /* open file */
G_fatal_error (”Cannot open vector file”);
Points = Vect_new_line_struct (h’|209350u’);
while (0 < Vect_read_next_line (&Map, Points)) /* loop reading

*/
{/* each line */
/* do something with Points */
}
Vect_destroy_line_struct (Points); /* remove allocation */
Vect_close (&Map); /* close up */

All Vect_ routines work in the same way on any lev el of access unless otherwise noted. Routines
that are designed for one level of access or another have the naming convention V#_ where # is
an integer (currently 1 or 2). For example: V2_line_att () is only valid with level 2 or higher
access, and will return the attribute number for a specified line.

13.3 Opening and closing vector maps

intopen existing
vector map Vect_open_old (struct Map_info *Map, char *name, char *mapset)

This routine opens the vector map name in mapset for reading. It returns the level
of successful open, or a negative value on failure.

intopen new
vector map 7Because there are two libraries involved and there are some cross-dependencies, it may occasionally be necessary

to specify $(VECTLIB) twice on the link statement in order to resolve all references.

222

13.4 Reading and writing vector maps

Vect_open_new (struct Map_info *Map, char *name)

This routine opens the vector map name in the current mapset for writing. It returns
the level of successful open which must be one, or a negative value on failure.

int specify level for
opening mapVect_set_open_level (int level)

This routine allows you to specify at which level the map is to be opened. It is
recommended that it only be used to force opening at level one(1). There is no
return value.

int close a vector
mapVect_close (struct Map_info *Map)

This routine closes an open vector map and cleans up the structures associated with
it. It MUST be called before exiting the module. When used in conjunction with
Vect_open_new, it will cause the final writing of the vector header before closing
the vector map. The header data is in the structure Map->head, which also changed
in 4.0 to be an instance of the structure (struct dig_head head) instead of a pointer
(struct dig_head *head).

13.4 Reading and writing vector maps

int read next vector
lineVect_read_next_line (struct Map_info *Map, struct line_pnts *Points)

This is the primary routine for reading through a vector map. It simply reads the
next line from the map into the Points structure. This routine should not be used in
conjunction with any other read_line routine. Return value is type of line, or
-2 on EOF
-1 on Error (generally out of memory)

This routine is modified by:
Vect_rewind()
Vect_set_constraint_region()
Vect_set_constraint_type()

This routine normally only reads lines that are ”alive” (as opposed to
dead or deleted) from the vector map. This can be overridden using
Vect_set_constraint_type(Map,-1).

223

13 Vector Library

intrewind vector
map for

re-reading
Vect_rewind (struct Map_info *Map)

This routine will reset the read pointer to the beginning of the map. This only
affects the routineVect_read_next_line.

intset restricted
region to read

vector arcs
from

Vect_set_constraint_region (struct Map_info *Map, double n, double s, double e, double
w)

This routine will set a restriction on reading only those lines which fall entirely
or partially in the specified rectangular region. Vect_read_next_line is currently
the only routine affected by this, and it does NOT currently cause line clipping.
Constraints affect only the Map specified. They do not affect any other Maps that
may be open.

intspecify types of
arcs to read Vect_set_constraint_type (struct Map_info *Map, int type)

This routine will set a restriction on reading only those lines which match the types
specified. This can be any combination of types bitwise OR’ed together. For
example: LINE | AREA would exclude any DOT (or future NEAT) line types.
Vect_read_next_line is currently the only routine affected by this. If type is set to
-1, all lines will be read including deleted or dead lines. An example of this ex-
ists in v.out.ascii, where it is desirable to include all lines, (ie. not exclude deleted
lines).
Constraints affect only the Map specified. They do not affect any other Maps that
may be open.

intunset any
vector read
constraints

Vect_remove_constraints (struct Map_info *Map)

Removes all constraints currently affecting Map.

longwrite out arc to
vector map Vect_write_line (struct Map_info *Map, int type, struct line_pnts *Points)

This routine will write out a line to a vector map which has previously been opened
for write by Vect_open_new. The type of line is one of: AREA, LINE, DOT It
returns the offset into the file where the line started. If this number is negative or 0,
there was an error.

224

13.5 Data Structures

int read vector arc
by specifying
offset

V1_read_line (struct Map_info *Map, struct line_pnts *Points, long offset)

This routine will read a line from the vector map at the specified offset in the file.
This function is available at level 1 or higher.
Return value is the same as Vect_read_next_line.

int read vector arc
by specifying
line id

V2_read_line (struct Map_info *Map, struct line_pnts *Points, int line)

This routine will read a line from the vector map at the specified line index in the
map. Refer to V2_num_lines for number of lines in the map. This function is
available at level 2 or higher.
Return value is the same as Vect_read_next_line.

13.5 Data Structures

struct line_pnts * create new
initialized line
points structure

Vect_new_line_struct (void)

This routine MUST be used to initialize any and all line_pnts structures. You can-
not simply create a line_pnts structure and pass its address to routines. It must first
be initialized. The correct procedure is: struct line_pnts *Points;

Points = Vect_new_line_struct();

This routine will print an error message and exit with an error on out of memory
condition.

int deallocate line
points structure
space

Vect_destroy_line_struct (struct line_pnts *Points)

This routine will free any memory created for a line_pnts structure. You can use
this when you are done with a line_pnts struct or when you need to free up unused
memory. The structure must have been created by Vect_new_line_struct.

13.6 Data Conversion

int convert xy
arrays to
line_pnts
structure

Vect_copy_xy_to_pnts (struct line_pnts *Points, double *x, double *y, int n)

225

13 Vector Library

Since all Vector library routines require the use of the line_pnts structure, and many
modules out there work with X and Y arrays of points, this routine was to created
to copy n data pairs from x,y arrays to a line_pnts structure Points. It handles all
memory management.

intconvert
line_pnts

structure to xy
arrays

Vect_copy_pnts_to_xy (struct line_pnts *Points, double *x, double *y, int *n)

Since all Vector library routines require the use of the line_pnts structure, and many
modules out there work with X and Y arrays of points, this routine was to created
to copy data from a line_pnts structure Points into user supplied x,y arrays. The
x,y arrays MUST each be large enough to hold Points.n_points doubles or memory
corruption will occur. No bounds checking is done. Upon return n will contain the
number of points copied.

intcopy vector
header struct

data
Vect_copy_head_data (struct dig_head *from, struct dig_head *to)

This routine should be used to copy data from one dig_head struct to another.
For example, if a 3.1 module used to fill in a local dig_head struct and then
called dig_write_head_binary() (which no longer exists), you would now call
Vect_copy_head_data (local_head, &Map.head) to copy the data into the Map
structure which would then be written out when Vect_close was called. This routine
must used because there are now other fields in the head structure which applica-
tions programmers should not touch, and this module copies only those fields which
are available to the programmer.

13.7 Miscellaneous

intget point inside
area and

outside all
islands

Vect_get_point_in_area (struct Map_info *Map, int area, double *X, double *Y)

This routine examines the area with index value area in a vector map and places in
X and Y, the X- and Y- positions respectively of a suitable area point.
The method is as follows: Take a line and intersect it with the polygon and any
islands. Sort the list of X values from these intersections. This will be a list of
segments alternating IN/OUT/IN/OUT of the polygon. Pick the largest IN segment
and take the midpoint.
Note. This function, works only for level 2 or higher. It returns 0 on success or -1
on error.

226

13.7 Miscellaneous

int get point inside
polygonVect_get_point_in_poly (struct line_pnts *Points, double *X, double *Y)

This routine finds a suitable area point in the ring described by the line struct Points,
but without reference to any islands that may be present inside the area. This rou-
tine is useful where prior topological information on an area is not available.
The return value is 0 on success, -1 on failure.

int get point inside
polygon but
outside the
islands
specifiled in
IPoints.

Vect_get_point_in_poly_isl (struct line_pnts *APoints, struct line_pnts **IPoints, int
n_isles, double *X, double *Y)

This routine finds a suitable area point in the ring described by the line struct
APoints and the interior islands specified in the array of line structs IPoints. This
routine is useful where prior topological information on an area is not available, as
for example in import filters.
The method for finding the area point is as follows: Take a line and intersect it with
the polygon and any islands. Sort the list of X values from these intersections. This
will be a list of segments alternating IN/OUT/IN/OUT of the polygon. Pick the
largest IN segment and take the midpoint.
The return value is 0 on success, -1 on failure.

int find if a given
point in an area
is inside an
island.

Vect_point_in_islands (struct Map_info *Map, int area, double x, double y)

This routine determines if the given point (x,y) is located inside an island of area
with index area.
The return value is 0 (false) if this condition is not met, 1 (true) if it is, and -1 if the
procedure fails.
Note. This function, works only for level 2 or higher.

int get defining
points for area
polygon

Vect_get_area_points (struct Map_info *Map, int area, struct line_pnts *Points)

This routine replaces dig_get_area(). It will fill in the Points structure with the
list of points which describe an area in clockwise order. Points at the junction of
constituent lines are included only once.
Note. This function, works only for level 2 or higher. It returns the number of
points or -1 on error.

int get defining
points for isle
perimeter

Vect_get_isle_points (struct Map_info *Map, int isle, struct line_pnts *Points)

227

13 Vector Library

This routine fills in the Points structure with the list of points which describe the
perimeter of a primary island in counter-clockwise order. Points at the junction of
constituent lines are included only once.
Note. This function, works only for level 2 or higher. It returns the number of
points or -1 on error.

intget number of
arcs in vector

map
V2_num_lines (struct Map_info *Map)

Return total number of lines in the vector Map.
Note. The line indexes are numbers from 1 to n, where n is the number of lines in
the vector map, as returned by this routine.

intget number of
areas in vector

map
V2_num_areas (struct Map_info *Map)

Return total number of areas in the vector Map.
Note. The area indexes are numbers from 1 to n, where n is the number of areas in
the vector map, as returned by this routine.

intget number of
islands in

vector map
V2_num_islands (struct Map_info *Map)

Return total number of islands in the vector Map.
Note. The islands indexes are numbers from 1 to n, where n is the number of
islands in the vector map, as returned by this routine.

intget attribute
number of arc V2_line_att (struct Map_info *Map, int line)

Given arc index n, return its attribute number.
Returns 0 if not labeled or on error.

intget attribute
number of area V2_area_att (struct Map_info *Map, int area)

Given area index n, return its attribute number.
Returns 0 if not labeled or on error.

228

13.7 Miscellaneous

intget area info
from id V2_get_area (struct Map_info *Map, int n, P_AREA **pa)

Given area index n, the P_AREA information for the area is read into a private
structure. A pointer to this structure is placed in pa. The pointer pa is valid until
the next call to this routine. Note that *pa does not need to point to anything on
entry. Returns 0 if found, or negative on error.

int get bounding
box of areaV2_get_area_bbox (struct Map_info *Map, int area, double *n, double *s, double *e, dou-

ble *w)

Given area index n, set n (north, s (south), e (east), and w (west) to the values of
the bounding box for the area.
Returns 0 if ok, or -1 on error.

int get bounding
box of arcV2_get_line_bbox (struct Map_info *Map, int line, double *n, double *s, double *e, double

*w)

Given arc index n, set n (north, s (south), e (east), and w (west) to the values of the
bounding box for the arc.
Returns 0 if ok, or -1 on error.

int print header
info to stdoutVect_print_header (struct Map_info *Map)

This routine replaces dig_print_header(), and simply displays selected information
from the header. Namely organization, map name, source date, and original scale.

int get open level
of vector mapVect_level (struct Map_info *Map)

This routine will return the number of the level at which a Map is opened at or -1
if Map is not opened.8

8The levels correspond to the 3.1 level 1 and level 2 accesses.

229

13 Vector Library

13.8 Routines that remain from GRASS 3.1

intfind which area
point is in dig_point_to_area (struct Map_info *Map, double x, double y)

Returns the index of the area containing the point x,y, or 0 if none found.

doubleis point in
area? dig_point_in_area (struct Map_info *Map, double x, double y, P_AREA *pa)

Given a filled P_AREA structure pa, determine if x,y is within the area. The struc-
ture pa can be filled with V2_get_area.
Returns 0.0 if x,y is not in the area, the positive minimum distance to the nearest
area edge if x,y is inside the area, or -1.0 on error.

intfind which arc
point is closest

to
dig_point_to_line (struct Map_info *Map, double x, double y, char type)

Returns the index of the arc which is nearest to the point x,y. The point x,y must
be within the arc’s bounding box. Set type to a combination of LINE, AREA, or
DOT (eg. LINE | AREA), or (char) -1 if you want to search all arc types.

intfind distance of
point to line dig_check_dist (struct Map_info *Map, intn, double x, double y, double *d)

Computes d, the square of the minimum distance from point x,y to arc nR. Returns
the number of the segment that was closest, or -1 on error. The segment number,
in combination with V2_read_line can be used to determine the endpoints of the
closest line-segment in the arc.

13.9 Loading the Vector Library

The library is loaded by specifying $(VECTLIB) in the Gmakefile. The following example is a
complete Gmakefile which compiles code that uses this library:

Gmakefile using $(VECTLIB)

230

13.9 Loading the Vector Library

OBJ = main.o sub1.o sub2.o

EXTRA_CFLAGS = $(VECT_INCLUDE)

$(BIN_MAIN_CMD)/pgm: $(OBJ) $(VECTLIB) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(VECTLIB) $(GISLIB)

$(VECTLIB): # in case the library changes

Note. EXTRA_CFLAGS tells the C compiler where additional # include files are located. This
is necessary since the required # include files do not currently live in the normal GRASS #
include directory. Notice that -I must not be provided before the $(VECT_INCLUDE)

Note. Because $(VECTLIB) currently references two distinct libraries, on occasion it may be
necessary to specify it twice on the link command because of library cross-references.

See 11 Compiling and Installing GRASS Modules (p. 69) for a complete discussion of Gmake-
files.

231

13 Vector Library

232

14 Imagery Library

14.1 Introduction to Imagery Library

The Imagery Library was created for version 3.0 of GRASS to support integrated image pro-
cessing directly in GRASS. It contains routines that provide access to the group database struc-
ture which was also introduced in GRASS 3.0 for the same purpose.1 It is assumed that the
reader has read 4 Database Structure (p. 17) for a general description of GRASS databases, 8
Image Data: Groups (p. 53) for a description of imagery groups, and 5 Raster Maps (p. 27)
for details about map layers in GRASS. The routines in the 14 Imagery Library (p. 233) are
presented in functional groupings, rather than in alphabetical order. The order of presentation
will, it is hoped, provide a better understanding of how the library is to be used, as well as show
the interrelationships among the various routines. Note that a good way to understand how to
use these routines is to look at the source code for GRASS modules which use them.2 Most
routines in this library require that the header file ”imagery.h” be included in any code using
these routines.3 Therefore, programmers should always include this file when writing code
using routines from this library:

#include ”imagery.h”

This header file includes the ”gis.h” header file as well.

Note. All routines and global variables in this library, documented or undocumented, start with
the prefix I_. To avoid name conflicts, programmers should not create variables or routines in
their own modules which use this prefix.

An alphabetic index is provided in A.5 Appendix E: Index to Imagery Library (p. 448)

14.2 Group Processing

The group is the key database structure which permits integration of image processing in GRASS.

1Since this is a new library, it is expected to grow. It is hoped that image analysis functions will be added to
complement the database functions already in the library.

2See 8.4 Imagery Modules (p. 58) for a list of some imagery programs.
3The GRASS compilation process, described in 11 Compiling and Installing GRASS Modules (p. 69), automati-

cally tells the C compiler how to find this and other GRASS header files.

233

14 Imagery Library

14.2.1 Prompting for a Group

The following routines interactively prompt the user for a group name in the current mapset.4

In each, the prompt string will be printed as the first line of the full prompt which asks the user
to enter a group name. If prompt is the empty string ””, then an appropriate prompt will be
substituted. The name that the user enters is copied into the group buffer.5 These routines have
a built-in ’list’ capability which allows the user to get a list of existing groups.

The user is required to enter a valid group name, or else hit the RETURN key to cancel the
request. If the user enters an invalid response, a message is printed, and the user is prompted
again. If the user cancels the request, 0 is returned; otherwise, 1 is returned.

intprompt for an
existing group I_ask_group_old (char *prompt, char *group)

Asks the user to enter the name of an existing group in the current mapset.

intprompt for new
group I_ask_group_new (char *prompt, char *group)

Asks the user to enter a name for a group which does not exist in the current
mapset.

intprompt for any
valid group

name
I_ask_group_any (char *prompt, char *group)

Asks the user to enter a valid group name. The group may or may not exist in the
current mapset.

Note. The user is not warned if the group exists. The programmer should use I_find_group to
determine if the group exists.

Here is an example of how to use these routines. Note that the programmer must handle the 0
return properly:

char group[50];
if (! I_ask_group_any (”Enter group to be processed”, group))
exit(0);

4This library only works with groups in the current mapset. Other mapsets, even those in the user’s mapset search
path, are ignored.

5The size of group should be large enough to hold any GRASS file name. Most systems allow file names to be
quite long. It is recommended that name be declared char group.

234

14.2 Group Processing

14.2.2 Finding Groups in the Database

Sometimes it is necessary to determine if a given group already exists. The following routine
provides this service:

int does group
exist?I_find_group (char *group)

Returns 1 if the specified group exists in the current mapset; 0 otherwise.

14.2.3 REF File

These routines provide access to the information contained in the REF file for groups and sub-
groups, as well as routines to update this information. They use the Ref structure, which is
defined in the ”imagery.h” header file; see 14.4 Imagery Library Data Structures (p. 239).

The contents of the REF file are read or updated by the following routines:

int read group REF
fileI_get_group_ref (char *group, struct Ref *ref)

Reads the contents of the REF file for the specified group into the ref structure.
Returns 1 if successful; 0 otherwise (but no error messages are printed).

int write group
REF fileI_put_group_ref (char *group, struct Ref *ref)

Writes the contents of the ref structure to the REF file for the specified group.
Returns 1 if successful; 0 otherwise (and prints a diagnostic error).
Note. This routine will create the group, if it does not already exist.

int read subgroup
REF fileI_get_subgroup_ref (char *group, char *subgroup, struct Ref *ref)

Reads the contents of the REF file for the specified subgroup of the specified
group into the ref structure.
Returns 1 if successful; 0 otherwise (but no error messages are printed).

235

14 Imagery Library

int write subgroup
REF fileI_put_subgroup_ref (char *group, char *subgroup, struct Ref *ref)

Writes the contents of the ref structure into the REF file for the specified subgroup
of the specified group.
Returns 1 if successful; 0 otherwise (and prints a diagnostic error).
Note. This routine will create the subgroup, if it does not already exist.

These next routines manipulate the Ref structure:

intinitialize Ref
structure I_init_group_ref (struct Ref *ref)

This routine initializes the ref structure for other library calls which require a Ref
structure. This routine must be called before any use of the structure can be made.
Note. The routines I_get_group_ref and I_get_subgroup_ref call this routine auto-
matically.

intadd file name to
Ref structure I_add_file_to_group_ref (char *name, char *mapset, struct Ref *ref)

This routine adds the file name and mapset to the list contained in the ref structure,
if it is not already in the list. The ref structure must have been properly initialized.
This routine is used by programs, such as i.maxlik, to add to the group new raster
files created from files already in the group.
Returns the index into the file array within the ref structure for the file after inser-
tion; see 14.4 Imagery Library Data Structures (p. 239).

intcopy Ref lists
I_transfer_group_ref_file (struct Ref *src, int n, struct Ref *dst)

This routine is used to copy file names from one Ref structure to another. The name
and mapset for file n from the src structure are copied into the dst structure (which
must be properly initialized).
For example, the following code copies one Ref structure to another:

struct Ref src,dst;
int n;
/* some code to get information into src */
...
I_init_group_ref (&dst);
for (n = 0; n < src.nfiles; n++)
I_transfer_group_ref_file (&src, n, &dst);

236

14.2 Group Processing

This routine is used by i.points to create the REF file for a subgroup.

int free Ref
structureI_free_group_ref (struct Ref *ref)

This routine frees memory allocated to the ref structure.

14.2.4 TARGET File

The following two routines read and write the TARGET file.

int read target
informationI_get_target (char *group, char *location, char *mapset)

Reads the target location and mapset from the TARGET file for the specified
group. Returns 1 if successful; 0 otherwise (and prints a diagnostic error). This
routine is used by i.points and i.rectify and probably should not be used by other
programs.
Note. This routine does not validate the target information.

int write target
informationI_put_target (char *group, char *location, char *mapset)

Writes the target location and mapset to the TARGET file for the specified group.
Returns 1 if successful; 0 otherwise (but no error messages are printed).
This routine is used by i.target and probably should not be used by other programs.
Note. This routine does not validate the target information.

14.2.5 POINTS File

The following routines read and write the POINTS file, which contains the image registration
control points. This file is created and updated by the module i.points,and read by i.rectify.

These routines use the Control_Points structure, which is defined in the ”imagery.h” header file;
see 14.4 Imagery Library Data Structures (p. 239).

Note. The interface to the Control_Points structure provided by the routines below is incom-
plete. A routine to initialize the structure is needed.

int read group
control pointsI_get_control_points (char *group, struct Control_Points *cp)

237

14 Imagery Library

Reads the control points from the POINTS file for the group into the cp structure.
Returns 1 if successful; 0 otherwise (and prints a diagnostic error).
Note. An error message is printed if the POINTS file is invalid, or does not exist.

intadd new control
point I_new_control_point (struct Control_Points *cp, double e1, double n1, double e2, double

n2, int status)

Once the control points have been read into the cp structure, this routine adds new
points to it. The new control point is given by e1 (column) and n1 (row) on the
image, and the e2 (east) and n2 (north) for the target database. The value of status
should be 1 if the point is a valid point; 0 otherwise.6

intwrite group
control points I_put_control_points (char *group, struct Control_Points *cp)

Writes the control points from the cp structure to the POINTS file for the specified
group.
Note. Points in cp with a negative status are not written to the POINTS file.

14.3 Loading the Imagery Library

The library is loaded by specifying $(IMAGERYLIB) in the Gmakefile. The following example
is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(IMAGERYLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(IMAGERYLIB) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(IMAGERYLIB) $(GISLIB)

$(IMAGERYLIB): # in case the library changes

$(GISLIB): # in case the library changes

Note. This library must be loaded with $(GISLIB) since it uses routines from that library. See
12 GIS Library (p. 79) or details on that library. See 11 Compiling and Installing GRASS
Modules (p. 69) for a complete discussion of Gmakefiles.

6Use of this routine implies that the point is probably good, so status should be set to 1.

238

14.4 Imagery Library Data Structures

14.4 Imagery Library Data Structures

Some of the data structures in the ”imagery.h” header file are described below.

14.4.1 struct Ref

The Ref structure is used to hold the information from the REF file for groups and subgroups.
The structure is:

struct Ref

{

int nfiles; /* number of REF files */

struct Ref_Files

{

char name[30]; /* REF file name */

char mapset[30]; /* REF file mapset */

} *file;

struct Ref_Color

{

unsigned char *table; /* color table for min-max values */

unsigned char *index; /* data translation index */

unsigned char *buf; /* data buffer for reading color file */

int fd; /* for image i/o */

CELL min, max; /* min,max CELL values */

int n; /* index into Ref_Files */

} red, grn, blu;

};

The Ref structure has nfiles (the number of raster files), file (the name and mapset of each file),
and red,grn,blu (color information for the group or subgroup 7).

7The red,grn,blu elements are expected to change as the imagery code develops. Do not reference them. Pretend
they do not exist.

239

14 Imagery Library

There is no function interface to the nfiles and file elements in the structure. This means that the
programmer must reference the elements of the structure directly.8 The name and mapset for
the i th file are file[i].name, and file[i].mapset.

For example, to print out the names of the raster files in the structure:

int i;

struct Ref ref;

.

..

/* some code to get the REF file for a group into ref */

..

for (i = 0; i < ref.nfiles; i++)

fprintf(stdout, ”%s in %s - n”, ref.file[i].name, ref.file[i].mapset);

14.4.2 struct Control_Points

The Control_Points structure is used to hold the control points from the group POINTS file.
The structure is:

struct

Control_Points

{

int count; /* number of control points */

double *e1; /* image east (column) */

double *n1; /* image north (row) */

double *e2; /* target east */

double *n2; /* target north */

int *status; /* status of control point */

};

The number of control points is count.

8The nfiles and file elements are not expected to change in the future.

240

14.4 Imagery Library Data Structures

Control point i is e1 [i], n1 [i], e2 [i], n2 [i], and its status is status [i].

241

14 Imagery Library

242

15 Raster Graphics Library

15.1 Introduction

The Raster Graphics Library provides the programmer with access to the GRASS graphics de-
vices. All video graphics calls are made through this library (directly or indirectly). No
standard/portable GRASS video graphics module drives any video display directly. This li-
brary provides a powerful, but limited number of graphics capabilities to the programmer. The
tremendous benefit of this approach is seen in the ease with which GRASS graphics applica-
tions modules port to new machines or devices. Because no device-dependent code exists in
application programs, virtually all GRASS graphics modules port without modification. Each
graphics device must be provided a driver (or translator program). At run-time, GRASS graph-
ics modules rendezvous with a user-selected driver module. Two significant prices are paid in
this approach to graphics: 1) graphics displays run significantly slower, and 2) the programmer
does not have access to fancy (and sometimes more efficient) resident library routines that have
been specially created for the device.

This library uses a couple of simple concepts. First, there is the idea of a current screen location.
There is nothing which appears on the graphics monitor to indicate the current location, but
many graphic commands begin their graphics at this location. It can, of course, be set explicitly.
Second, there is always a current color. Many graphic commands will do their work in the
currently chosen color. The programmer always works in the screen coordinate system. Unlike
many graphics libraries developed to support CAD, there is no concept of a world coordinate
system. The programmer must address graphics requests to explicit screen locations. This is
necessary, especially in the interest of fast raster graphics.

The upper left hand corner of the screen is the origin. The actual pixel rows and columns which
define the edge of the video surface are returned with calls to R_screen_left, R_screen_rite,
R_screen_bot, and R_screen_top.

Note. All routines and global variables in this library, documented or undocumented, start with
the prefix R_. To avoid name conflicts, programmers should not create variables or routines in
their own modules which use this prefix.

An alphabetic index is provided in A.7 Appendix G: Index to Raster Graphics Library (p. 452).

243

15 Raster Graphics Library

15.2 Connecting to the Driver

Before any other graphics calls can be made, a successful connection to a running and selected
graphics driver must be made.

intinitialize
graphics R_open_driver ()

Initializes connection to current graphics driver. Refer to GRASS User’s Manual
entries on the d.mon command. If connection cannot be made, the application
module sends a message to the user stating that a driver has not been selected or
could not be opened. Note that only one application module can be connected to a
graphics driver at once.
After all graphics have been completed, the driver should be closed.

intterminate
graphics R_close_driver ()

This routine breaks the connection with the graphics driver opened by
R_open_driver().

15.3 Colors

GRASS is highly dependent on color for distinguishing between different categories. No
graphic patterning is supported in any automatic way. There are two color modes. Fixed color
refers to set and immutable color look-up tables on the hardware device. In some cases this
is necessary because the graphics device does not contain programmer definable color look-up
tables (LUT). Floating colors use the LUTs of the graphics device often in an interactive mode
with the user. The basic impact on the user is that under the fixed mode, multiple maps can
be displayed on the device with apparently no color interference between maps. Under float
mode, the user may interactively manipulate the hardware color tables (using modules such as
d.colors). Other than the fact that in float mode no more colors may be used than color registers
available on the user’s chosen driver, there are no other programming repercussions.

intselect fixed
color table R_color_table_fixed ()

Selects a fixed color table to be used for subsequent color calls. It is expected that
the user will follow this call with a call to erase and reinitialize the entire graphics
screen.
Returns 0 if successful, non-zero if unsuccessful.

244

15.3 Colors

int select floating
color tableR_color_table_float ()

Selects a float color table to be used for subsequent color calls. It is expected that
the user will follow this call with a call to erase and reinitialize the entire graphics
screen.
Returns 0 if successful, non-zero if unsuccessful.

Colors are set using integer values in the range of 0-255 to set the red, green, and blue intensi-
ties. In float mode, these values are used to directly modify the hardware color look-up tables
and instantaneously modify the appearance of colors on the monitor. In fixed mode, these val-
ues modify secondary look-up tables in the devices driver module so that the colors involved
point to the closest available color on the device.

int define single
colorR_reset_color (unsigned char red, unsigned char green, unsigned char blu, int num)

Sets color number num to the intensities represented by red, green, and blue.

int define multiple
colorsR_reset_colors (int min, int max, unsigned char *red, unsigned char *green, unsigned

char *blue)

Sets color numbers min through max to the intensities represented in the arrays
red, green, and blue.

int select color
R_color (int color)

Selects the color to be used in subsequent draw commands.

int select standard
colorR_standard_color (int color)

Selects the standard color to be used in subsequent draw commands. The color
value is best retrieved using D_translate_color. See 16 Display Graphics Library
(p. 255).

int select color
R_RGB_color (int red, int green, int blue)

245

15 Raster Graphics Library

When in float mode (see R_color_table_float), this call selects the color most
closely matched to the red, green, and blue intensities requested. These values
must be in the range of 0-255.

15.4 Basic Graphics

Several calls are common to nearly all graphics systems. Routines exist to determine screen
dimensions, as well as routines for moving, drawing, and erasing.

intbottom of
screen R_screen_bot ()

Returns the pixel row number of the bottom of the screen.

inttop of screen
R_screen_top ()

Returns the pixel row number of the top of the screen.

intscreen left edge
R_screen_left ()

Returns the pixel column number of the left edge of the screen.

intscreen right
edge R_screen_rite ()

Returns the pixel column number of the right edge of the screen.

intmove current
location R_move_abs (int x, int y)

Move the current location to the absolute screen coordinate x,y. Nothing is drawn
on the screen.

246

15.4 Basic Graphics

intmove current
location R_move_rel (int dx, int dy)

Shift the current screen location by the values in dx and dy:

Newx = Oldx + dx;
Newy = Oldy + dy;

Nothing is drawn on the screen.

int draw line
R_cont_abs (int x, int y)

Draw a line using the current color, selected via R_color, from the current location
to the location specified by x,y. The current location is updated to x,y.

int draw line
R_cont_rel (int dx, int dy)

Draw a line using the current color, selected via R_color, from the current location
to the relative location specified by dx and dy. The current location is updated:

Newx = Oldx + dx;
Newy = Oldy + dy;

int fill a box
R_box_abs (int x1, int y1, int x2, int y2)

A box is drawn in the current color using the coordinates x1,y1 and x2,y2 as oppo-
site corners of the box. The current location is updated to x2,y2.

int fill a box
R_box_rel (int dx, int dy)

A box is drawn in the current color using the current location as one corner and
the current location plus dx and dy as the opposite corner of the box. The current
location is updated:

Newx = Oldx + dx;
Newy = Oldy + dy;

247

15 Raster Graphics Library

int erase screen
R_erase ()

Erases the entire screen to black.

intflush graphics
R_flush ()

Send all pending graphics commands to the graphics driver. This is done automat-
ically when graphics input requests are made.

intsynchronize
graphics R_stabilize ()

Send all pending graphics commands to the graphics driver and cause all pending
graphics to be drawn (provided the driver is written to comply). This routine does
more than R_flush and in many instances is the more appropriate routine fo the two
to use.

15.5 Poly Calls

In many cases strings of points are used to describe a complex line, a series of dots, or a solid
polygon. Absolute and relative calls are provided for each of these operations.

intdraw a series of
dots R_polydots_abs (int *x, int *y, int num)

Pixels at the num absolute positions in the x and y arrays are turned to the current
color. The current position is left updated to the position of the last dot.

intdraw a series of
dots R_polydots_rel (int *x, int *y, int num)

Pixels at the num relative positions in the x and y arrays are turned to the current
color. The first position is relative to the starting current location; the succeeding
positions are then relative to the previous position. The current position is updated
to the position of the last dot.

248

15.6 Raster Calls

intdraw a closed
polygon R_polygon_abs (int *x, int *y,int num)

The num absolute positions in the x and y arrays outline a closed polygon which
is filled with the current color. The current position is left updated to the position
of the last point.

int draw a closed
polygonR_polygon_rel (int *x, int *y, int num)

The num relative positions in the x and y arrays outline a closed polygon which
is filled with the current color. The first position is relative to the starting current
location; the succeeding positions are then relative to the previous position. The
current position is updated to the position of the last point.

int draw an open
polygonR_polyline_abs (int *x, int *y, int num)

The num absolute positions in the x and y arrays are used to generate a multiseg-
ment line (often curved). This line is drawn with the current color. The current
position is left updated to the position of the last point.
Note. It is not assumed that the line is closed, i.e., no line is drawn from the last
point to the first point.

int draw an open
polygonR_polyline_rel (int *x, int *y, int num)

The num relative positions in the x and y arrays are used to generate a multisegment
line (often curved). The first position is relative to the starting current location; the
succeeding positions are then relative to the previous position. The current position
is updated to the position of the last point. This line is drawn with the current color.
Note. No line is drawn between the last point and the first point.

15.6 Raster Calls

GRASS requires efficient drawing of raster information to the display device. These calls pro-
vide that capability.

int draw a raster
R_raster (int num, int nrows, int withzero, int *raster)

249

15 Raster Graphics Library

Starting at the current position, the num colors represented in the raster array
are drawn for nrows consecutive pixel rows. The withzero flag is used to indicate
whether 0 values are to be treated as a color (1) or should be ignored (0). If ignored,
those screen pixels in these locations are not modified. This option is useful for
graphic overlays.

intinitialize
graphics R_set_RGB_color (unsigned char red[256], unsigned char green[256], unsigned char

blue[256])

The three 256 member arrays, red, green, and blue, establish look-up tables which
translate the raw image values supplied in R_RGB_raster to color intensity values
which are then displayed on the video screen. These two commands are tailor-made
for imagery data coming off sensors which give values in the range of 0-255.

intdraw a raster
R_RGB_raster (int num, int nrows, unsigned char *red, unsigned char *green, unsigned
char *blue, int withzero)

This is useful only in fixed color mode (see R_color_table_fixed). Starting at the
current position, the num colors represented by the intensities described in the red,
green, and blue arrays are drawn for nrows consecutive pixel rows. The raw values
in these arrays are in the range of 0-255. They are used to map into the intensity
maps which were previously set with R_set_RGB_color. The withzero flag is used
to indicate whether 0 values are to be treated as a color (1) or should be ignored
(0). If ignored, those screen pixels in these locations are not modified. This option
is useful for graphic overlays.

15.7 Text

These calls provide access to built-in vector fonts which may be sized and clipped to the pro-
grammer’s specifications.

intset text clipping
frame R_set_window (int top, int bottom, int left, int right)

Subsequent calls to R_text will have text strings clipped to the screen frame defined
by top, bottom, left, right.

intchoose font

250

15.7 Text

R_font (char *font)

Set current font to font. Available fonts are:

Font Name Description
cyrilc cyrillic
gothgbt Gothic Great Britain triplex
gothgrt Gothic German triplex
gothitt Gothic Italian triplex
greekc Greek complex
greekcs Greek complex script
greekp Greek plain
greeks Greek simplex
italicc Italian complex
italiccs Italian complex small
italict Italian triplex
romanc Roman complex
romancs Roman complex small
romand Roman duplex
romanp Roman plain
romans Roman simplex
romant Roman triplex
scriptc Script complex
scripts Script simplex

int set text size
R_text_size (int width, int height)

Sets text pixel width and height to width and height.

int write text
R_text (char *text)

Writes text in the current color and font, at the current text width and height, start-
ing at the current screen location.

int get text extents
R_get_text_box (char *text, int *top, int *bottom, int *left, int *right)

The extent of the area enclosing the text is returned in the integer pointers top,
bottom, left, and right. No text is actually drawn. This is useful for capturing
the text extent so that the text location can be prepared with proper background or
border.

251

15 Raster Graphics Library

15.8 GRASS font support

The current mechanism of GRASS 5.0 font support is this (all files are in the directory src/display/devices/lib
unless stated otherwise):

1. A client calls R_font(), which sends the filename ($GISBASE/fonts/font_name) to the
display driver using the FONT command. See src/libes/raster/Font.c.

2. The display driver receives the FONT command and the filename. See command.c.

3. It passes the filename to Font_get() (Font_get.c), which passes it to init_font() (font.c),
which reads the file into memory.

4. A client draws text by calling R_text (src/libes/raster/Text.c), which sends the string to
the display driver using the TEXT command.

5. The display driver receives the TEXT command and the string. See command.c (again).

6. It passes the string to Text() (Text.c) which calls soft_text() with the string and several
stored parameters.

7. soft_text() (Text2.c) calls drawchar() (same file), to draw each character.

8. drawchar() calls get_char_vects() (font.c) to retrieve the actual vector definitions. It
then draws the character using text_move() and text_draw() (same file), which use the
Move_abs() and Cont_abs() functions (these are implemented separately by each display
driver, e.g. XDRIVER).

15.9 User Input

The raster library provides mouse (or other pointing device) input from the user. This can be
accomplished with a pointer, a rubber-band line or a rubber-band box. Upon pressing one of
three mouse buttons, the current mouse location and the button pressed are returned.

intget mouse
location using

pointer
R_get_location_with_pointer (int *nx, int *ny, int *button)

A cursor is put on the screen at the location specified by the coordinate found at the
nx,ny pointers. This cursor tracks the mouse (or other pointing device) until one
of three mouse buttons are pressed. Upon pressing, the cursor is removed from the
screen, the current mouse coordinates are returned by the nx and ny pointers, and
the mouse button (1 for left, 2 for middle, and 3 for right) is returned in the button
pointer.

252

15.10 Loading the Raster Graphics Library

intget mouse
location using a

line
R_get_location_with_line (int x, int y, int *nx, int *ny, int *button)

Similar to R_get_location_with_pointer except the pointer is replaced by a line
which has one end fixed at the coordinate identified by the x,y values. The other
end of the line is initialized at the coordinate identified by the nx,ny pointers. This
end then tracks the mouse until a button is pressed. The mouse button (1 for left, 2
for middle, and 3 for right) is returned in the button pointer.

int get mouse
location using a
box

R_get_location_with_box (int x, int y, int *nx, int *ny, int *button)

Identical to R_get_location_with_line except a rubber-band box is used instead of
a rubber-band line.

15.10 Loading the Raster Graphics Library

The library is loaded by specifying $(RASTERLIB) in the Gmakefile. The following example
is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(RASTERLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(RASTERLIB) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(RASTERLIB) $(GISLIB)

$(RASTERLIB): # in case the library changes

$(GISLIB): # in case the library changes

Note. This library must be loaded with $(GISLIB) since it uses routines from that library.
See 12 GIS Library (p. 79) for details on that library. This library is usually loaded with the
$(DISPLAYLIB). See 16 Display Graphics Library (p. 255) for details on that library.

See 11 Compiling and Installing GRASS Modules (p. 69) for a complete discussion of Gmake-
files.

253

15 Raster Graphics Library

254

16 Display Graphics Library

16.1 Introduction

This library provides a wide assortment of higher level graphics commands which in turn use
the graphics raster library primitives. It is highly recommended that this section be used to
understand how some of the GRASS graphics commands operate. Such modules like d.vect,
d.graph, and d.rast demonstrate how these routines work together. The routines fall into four
basic sets: 1) frame1 creation and management, 2) coordinate conversion routines, 3) special-
ized efficient raster display routines, and 4) assorted miscellaneous routines like pop-up menus
and line clipping.

Note. All routines and global variables in this library, documented or undocumented, start with
the prefix D_. To avoid name conflicts, programmers should not create variables or routines in
their own modules which use this prefix.

An alphabetic index is provided in A.6 Appendix F: Index to Display Graphics Library (p. 449).

16.2 Library Initialization

The following routine performs a required setup procedure. Its use is encouraged and simplifies
the use of this library.

int initialize/create
a frameD_setup (int clear)

This routine performs a series of initialization steps for the current frame. It also
creates a full screen frame if there is no current frame. The clear flag, if set to 1,
tells this routine to clear any information associated with the frame: graphics as
well as region information.
This routine relieves the programmer of having to perform the following idiomatic
function call sequence

struct Cell_head region;

1In previous versions of GRASS, these were called graphic windows. To reduce ambiguity for users, these are now
called graphic frames. However, for backward compatiblity (and general programmer confusion) the routines
described here still retain their original names - the word ”window” is still used in the naming of these routines.

255

16 Display Graphics Library

char name[128];
int T,B,L,R;
/* get current frame, create full_screen frame if no current

frame */
if (D_get_cur_wind(name)) {
T =R_screen_top();
B =R_screen_bot();
L =R_screen_left();
R =R_screen_rite();
strcpy (name, ”full_screen”);
D_new_window (name, T, B, L, R);
}
if (D_set_cur_wind(name)) G_fatal_error(”Current graphics frame

not available”) ;
if (D_get_screen_window(&T, &B, &L, &R)) G_fatal_error(”Getting

graphics coordinates”) ;
/* clear the frame, if requested to do so */
if (clear) {
D_clear_window();
R_standard_color(D_translate_color(”black”));
R_box_abs (L, T, R, B);
}
/* Set the map region associated with graphics frame */
G_get_set_window (®ion);
if (D_check_map_window(®ion)) G_fatal_error(”Setting graphics

coordinates”); if(G_set_window (®ion) < 0) G_fatal_error (”Invalid
graphics region coordinates”);
/* Determine conversion factors */
if (D_do_conversions(®ion, T, B, L, R)) G_fatal_error(”Error

calculating graphics-region conversions”)
/* set text clipping, for good measure, and set a starting location

*/
R_set_window (T,B,L,R);
R_move_abs(0,0);
D_move_abs(0,0);

16.3 Frame Management

The following set of routines create, destroy, and otherwise manage graphic frames.

intcreate new
graphics frame D_new_window (char *name, int top, int bottom, int left, int right)

Creates a new frame name with coordinates top, bottom, left, and right. If name
is the empty string ”” (i.e., *name = = 0), the routine returns a unique string in
name.

256

16.3 Frame Management

int set current
graphics frameD_set_cur_wind (char *name)

Selects the frame name to be the current frame. The previous current frame (if
there was one) is outlined in grey. The selected current frame is outlined in white.

int identify current
graphics frameD_get_cur_wind (char *name)

Captures the name of the current frame in string name.

int outlines current
frameD_show_window (int color)

Outlines current frame in color. Appropriate colors are found in $GIS-
BASE/src/D/libes/colors.h2 and are spelled with lowercase letters.

int retrieve current
frame
coordinates

D_get_screen_window (int *top, int *bottom, int *left, int *right)

Returns current frame’s coordinates in the pointers top, bottom, left, and right.

int assign/retrieve
current map
region

D_check_map_window (struct Cell_head *region)

Graphics frames can have GRASS map regions associated with them. This routine
passes the map region to the current graphics frame. If a GRASS region is already
associated with the graphics frame, its information is copied into region for use
by the calling module. Otherwise region is associated with the current graphics
frame.
Note this routine is called by D_setup.

int resets current
frame positionD_reset_screen_window (int top, int bottom, int left, int right)

Re-establishes the screen position of a frame at the location specified by top, bot-
tom, left, and right.

2$GISBASE is the directory where GRASS is installed. See 10.1 UNIX Environment (p. 65) for details.

257

16 Display Graphics Library

intgive current
time to frame D_timestamp ()

Timestamp the current frame. This is used primarily to identify which frames are
on top of other, specified frames.

interase current
frame D_erase_window ()

Erases the frame on the screen using the currently selected color.

intremove a frame
D_remove_window ()

Removes any trace of the current frame.

intclears
information

about current
frame

D_clear_window ()

Removes all information about the current frame. This includes the map region and
the frame content lists.

16.4 Frame Contents Management

This special set of graphics frame management routines maintains lists of frame contents.

intadd command
to frame

display list
D_add_to_list (char *string)

Adds string to list of screen contents. By convention, string is a command string
which could be used to recreate a part of the graphics contents. This should be done
for all screen graphics except for the display of raster maps. The D_set_cell_name
routine,the D_set_dig_name routine and the D_set_site_name routine are used for
this special case.

intadd raster map
name to display

list
D_set_cell_name (char *name)

258

16.4 Frame Contents Management

Stores the raster3 map name in the information associated with the current frame.

int retrieve raster
map nameD_get_cell_name (char *name)

Returns the name of the raster map associated with the current frame.

int add vector map
name to display
list

D_set_dig_name (char *name)

Stores the vector map name in the information associated with the current frame.

int retrieve vector
map nameD_get_dig_name (char *name)

Returns the name of the vector map associated with the current frame.

int add site map
name to display
list

D_set_site_name (char *name)

Stores the site map name in the information associated with the current frame.

int retrieve site
map nameD_get_site_name (char *name)

Returns the name of the site map associated with the current frame.

Note: R_pad_freelist() should be called to free memory allocated before.

int clear frame
display listsD_clear_window ()

Removes all display information lists associated with the current frame.
3As with the change from window to frame, GRASS 4.0 changed word usage from cell to raster. For compatibility

with existing code, the routines have not changed their names.

259

16 Display Graphics Library

16.5 Coordinate Transformation Routines

These routines provide coordinate transformation information. GRASS graphics modules typi-
cally work with the following three coordinate systems:

Coordinate system Origin

Array upperleft (NW)

Display screen upper left (NW)

Earth lower left (SW)

Display screen coordinates are the physical coordinates of the display screen and are referred
to as x and y. Earth region coordinates are from the GRASS database regions and are referred
to as east and north. Array coordinates are the columns and rows relative to the GRASS region
and are referred to as column and row. The routine D_do_conversions is called to establish
the relationships between these different systems. Then a wide variety of accompanying calls
provide access to conversion factors as well as conversion routines.

intinitialize
conversions D_do_conversions (struct Cell_head *region, int top, int bottom, int left, int right)

The relationship between the earth region and the top, bottom, left, and right
screen coordinates is established, which then allows conversions between all three
coordinate systems to be performed.
Note this routine is called by D_setup.

In the following routines, a value in one of the coordinate systems is converted to the equivalent
value in a different coordinate system. The routines are named based on the coordinates systems
involved. Display screen coordinates are represented by d, array coordinates by a, and earth
coordinates by u (which used to stand for UTM).

doubleearth to array
(north) D_u_to_a_row (double north)

Returns a row value in the array coordinate system when provided the correspond-
ing north value in the earth coordinate system.

doubleearth to array
(east D_u_to_a_col (double east)

260

16.5 Coordinate Transformation Routines

Returns a column value in the array coordinate system when provided the corre-
sponding east value in the earth coordinate system.

double array to screen
(row)D_a_to_d_row (double row)

Returns a y value in the screen coordinate system when provided the corresponding
row value in the array coordinate system.

double array to screen
(column)D_a_to_d_col (double column)

Returns an x value in the screen coordinate system when provided the correspond-
ing column value in the array coordinate system.

double earth to screen
(north)D_u_to_d_row (double north)

Returns a y value in the screen coordinate system when provided the corresponding
north value in the earth coordinate system.

double earth to screen
(east)D_u_to_d_col (double east)

Returns an x value in the screen coordinate system when provided the correspond-
ing east value in the earth coordinate system.

double screen to earth
(y)D_d_to_u_row (double y)

Returns a north value in the earth coordinate system when provided the correspond-
ing y value in the screen coordinate system.

double screen to earth
(x)D_d_to_u_col (double x)

261

16 Display Graphics Library

Returns an east value in the earth coordinate system when provided the correspond-
ing x value in the screen coordinate system.

doublescreen to array
(y) D_d_to_a_row (double y)

Returns a row value in the array coordinate system when provided the correspond-
ing y value in the screen coordinate system.

doublescreen to array
(x) D_d_to_a_col (double x)

Returns a column value in the array coordinate system when provided the corre-
sponding x value in the screen coordinate system.

intreset raster
color value D_reset_color (CELL data, int r, int g, int b)

Modifies the hardware colormap, provided that the graphics are not using fixed
more colors. The hardware color register corresponding to the raster data value is
set to the combined values of r,g,b. This routine may only be called after a call to
D_set_colors. D_reset_color is for use by modules such as d.colors. Returns 1 if
the hardware colormap was updated, 0 if not. A 0 value will result if either a fixed
color table transition is in effect, or because the data is not in the color range set by
the call D_set_colors.

intverify a range
of colors D_check_colormap_size (CELL min, CELL max, int *ncolors)

This routine determines if the range of colors fits into the hardware colormap. If it
does, then the colors can be loaded directly into the hardware colormap and color
toggling will be possible. Otherwise a fixed lookup scheme must be used, and color
toggling will not be possible.
If the colors will fit, ncolors is set to the required number of colors (computed as
max-min+2) and 1 is returned. Otherwise ncolors is set to the number of hardware
colors and 0 is returned.

voidchange to
hardware color D_lookup_colors (CELL *data, int n, struct Colors *colors)

262

16.6 Raster Graphics

The n data values are changed to their corresponding hardware color number. The
colors structure must be the same one that was passed to D_set_colors.

void select raster
color for lineD_color (CELL cat, struct Colors *colors)

D_color specifies a raster color to use for line drawing. See R_color for a related
routine.

16.6 Raster Graphics

The display of raster graphics is very different from the display of vector graphics. While vector
graphics routines can efficiently make use of world coordinates, the efficient rendering of raster
images requires the programmer to work within the coordinate system of the graphics device.
These routines make it easy to do just that. The application of these routines may be inspected
in such commands as d.rast, r.combine and r.weight which display graphics results to the screen.

int establish raster
colors for
graphics

D_set_colors (struct Colors *colors)

This routine sets the colors to be used for raster graphics. The colors structure must
be either be read using G_read_colors or otherwise prepared using the routines
described in 12.10.3 Raster Color Table (p. 116).
Return values are 1 if the colors will fit into the hardware color map; 0 otherwise
(in which case a fixed color approximation based on these colors will be applied).
These return codes are not error codes, just information.
Note. Due to the way this routine behaves, it is not correct to assume that
a raster category value can be used to index the color registers. The routines
D_lookup_colors or D_color must be used for that purpose.

int prepare for
raster graphicD_cell_draw_setup (int top, int bottom, int left, int right)

The raster display subsystem establishes conversion parameters based on the screen
extent defined by top, bottom, left, and right, all of which are obtainable from
D_get_screen_window for the current frame.

int render a raster
rowD_draw_cell (int row, CELL *raster, struct Colors *colors)

263

16 Display Graphics Library

The row gives the map array row. The raster array provides the categories for each
raster value in that row. The colors structure must be the same as the one passed to
D_set_colors.
This routine is called consecutively with the information necessary to draw a raster
image from north to south. No rows can be skipped. All screen pixel rows which
represent the current map array row are rendered. The routine returns the map array
row which is needed to draw the next screen pixel row.

intconfigure raster
overlay mode D_set_overlay_mode (int flag)

This routine determines if D_draw_cell draws in overlay mode (locations with cat-
egory 0 are left untouched) or not (colored with the color for category 0). Set flag
to 1 (TRUE) for overlay mode; 0 (FALSE) otherwise.

intlow level raster
plotting D_raster (CELL *raster, int n, int repeat, struct Colors *colors)

This low-level routine plots raster data. The raster array has n values. The raster
is plotted repeat times, one row below the other. The colors structure must be the
same one passed to D_set_colors.
Note. This routine does not perform resampling or placement. D_draw_cell does
resampling and placement and then calls this routine to do the actual plotting.

Here is an example of how these routines are used to plot a raster map. The input parameters
are the raster map name and mapset and an overlay flag.

#include <stdlib.h>

#include "gis.h"
#include "raster.h"
#include "display.h"

void plot_raster_map(char *name, char *mapset, int overlay)
{

struct Colors colors;
CELL *raster;
int row, fd, top, bottom, left, right;

/* perform plotting setup */
D_setup(0);
D_get_screen_window(&top, &bottom, &left, &right);

if (D_cell_draw_setup(top, bottom, left, right))
G_fatal_error("D_cell_draw_setup");

264

16.7 Window Clipping

raster = G_allocate_cell_buf();

/* open raster map, read and set the colors */
if((fd = G_open_cell_old(name, mapset)) < 0)

G_fatal_error("G_open_cell_old");
if (G_read_colors(name, mapset, &colors) < 0)

G_fatal_error("G_read_colors");
D_set_colors(&colors);

/* plot */
D_set_overlay_mode(overlay);
for (row=0; row >= 0;)
{

if (G_get_map_row(fd, raster, row) < 0)
G_fatal_error("G_get_map_row");

row = D_draw_cell(row, raster, &colors);
}
G_close_cell(fd);
G_free_colors(&colors);
G_free(raster);

}

int main(int argc, char **argv)
{

char name[] = "elevation.dem";
char *mapset;

G_gisinit(argv[0]);

mapset = G_find_cell2(name, "");

if (R_open_driver() != 0)
G_fatal_error("R_open_driver");

plot_raster_map(name, mapset, 0);

R_close_driver();

return 0;
}

16.7 Window Clipping

This section describes a routine which is quite useful in many settings. Window clipping is used
for graphics display and digitizing.

int clip coordinates
to windowD_clip (double s, double n, double w, double e, double *x, double *y, double *c_x, double

*c_y)

265

16 Display Graphics Library

A line represented by the coordinates x, y and c_x, c_y is clipped to the window
defined by s (south), n (north), w (west), and e (east). Note that the following
constraints must be true:
w <e
s <n
The x and c_x are values to be compared to w and e. The y and c_y are values to
be compared to s and n.
The x and c_x values returned lie between w and e. The y and c_y values returned
lie between s and n.

16.8 Pop-up Menus

intpop-up menu
D_popup (int bcolor, int tcolor, int dcolor, int top, int left, int size, char *options[])

This routine provides a pop-up type menu on the graphics screen. The bcolor
specifies the background color. The tcolor is the text color. The dcolor specifies
the color of the line used to divide the menu items. The top and left specify the
placement of the top left corner of the menu on the screen. 0,0 is at the bottom
left of the screen, and 100,100 is at the top right. The size of the text is given
as a percentage of the vertical size of the screen. The options array is a NULL
terminated array of character strings. The first is a menu title and the rest are the
menu options (i.e., options[0] is the menu title, and options[1], options[2], etc., are
the menu options). The last option must be the NULL pointer.
The coordinates of the bottom right of the menu are calculated based on the top left
coordinates, the size, the number of options, and the longest option text length.
If necessary, the menu coordinates are adjusted to make sure the menu is on the
screen.
D_popup() does the following:

1. Current screen contents under the menu are saved.
2. Area is blanked with the background color and fringed with the text color.
3. Menu options are drawn using the current font.

4. User uses the mouse to choose the desired option.
5. Menu is erased and screen is restored with the original contents.
6. Number of the selected option is returned to the calling module.

16.9 Colors

intset colors in
driver D_reset_colors (struct Colors *colors)

266

16.10 Loading the Display Graphics Library

Turns color information provided in the colors structure into color requests to the
graphics driver. These colors are for raster graphics, not lines or text. See 12.10.3
Raster Color Table (p. 116) for GIS Library routines which use this structure.

int color name to
numberD_translate_color (char *name)

Takes a color name in ascii and returns the color number for that color. Returns
0 if color is not known. The color number returned is for lines and text, not raster
graphics.

16.10 Loading the Display Graphics Library

The library is loaded by specifying $(DISPLAYLIB), $(RASTERLIB) and $(GISLIB) in the
Gmakefile. The following example is a complete Gmakefile which compiles code that uses this
library:

Gmakefile for $(DISPLAYLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(DISPLAYLIB) $(RASTERLIB) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(DISPLAYLIB) -
$(RASTERLIB) $(GISLIB)

$(DISPLAYLIB): # in case the library changes

$(RASTERLIB): # in case the library changes

$(GISLIB): # in case the library changes

Note. This library uses routines in $(RASTERLIB). See 15 Raster Graphics Library (p. 243)
for details on that library. Also $(RASTERLIB) uses routines in $(GISLIB). See 12 GIS Library
(p. 79) for details on that library. See 11 Compiling and Installing GRASS Modules (p. 69) for
a complete discussion of Gmakefiles.

16.11 Vector Graphics / Plotting Routines

This section describes routines in GISLIB and the DISPLAYLIB libraries to support plotting of
vector data. The best source for an example of how they are used is the GRASS d.vect module.

267

16 Display Graphics Library

16.11.1 DISPLAYLIB routines

intgraphics frame
setup D_setup (int clear)

Performs a full setup for the current graphics frame: 1) Makes sure there is a current
graphics frame (will create a full-screen one, if not); 2) Sets the region coordinates
so that the graphics frame and the active module region agree (may change ac-
tive module region to do this); and 3) performs graphic frame/region coordinate
conversion initialization.
If clear is true, the frame is cleared (same as running d.erase.) Otherwise, it is not
cleared.

intset clipping
window D_set_clip_window (int top, int bottom, int left, int right)

Sets the clipping window to the pixel window that corresponds to the current
database region. This is the default.

intset clipping
window to map

window
D_set_clip_window_to_map_window ()

Sets the clipping window to the pixel window that corresponds to the current
database region. This is the default.

intline to x,y
D_cont_abs (int x, int y)

Draws a line from the current position to pixel location x,y. Any part of the line
that falls outside the clipping window is not drawn.
Note. The new position is x,y, even if it falls outside the clipping window. Returns
0 if the line was contained entirely in the clipping window, 1 if the line had to be
clipped to draw it.

intline to x,y
D_cont_rel (int x, int y)

Equivalent to D_cont_abs(curx+x, cury+y) where curx, cury is the current pixel
location.

268

16.11 Vector Graphics / Plotting Routines

int move to pixel
D_move_abs (int x, int y)

Move without drawing to pixel location x,y, even if it falls outside the clipping
window.

int move to pixel
D_move_rel (int x, int y)

Equivalent to D_move_abs(curx+x, cury+y) where curx, cury is the current pixel
location.

269

16 Display Graphics Library

270

17 Lock Library

17.1 Introduction

This library provides an advisory locking mechanism. It is based on the idea that a process will
write a process id into a file to create the lock, and subsequent processes will obey the lock if
the file still exists and the process whose id is written in the file is still running.

17.2 Lock Routine Synopes

int create a lock
lock_file (char *file, int pid)

This routine decides if the lock can be set and, if so, sets the lock. If file does not
exist, the lock is set by creating the file and writing the pid (process id) into the
file. If file exists, the lock may still be active, or it may have been abandoned. To
determine this, an integer is read out of the file. This integer is taken to be the
process id for the process which created the lock. If this process is still running, the
lock is still active and the lock request is denied. Otherwise the lock is considered
to have been abandoned, and the lock is set by writing the pid into the file.
Return codes:
1 ok, lock request was successful
0 sorry, another process already has the file locked
-1 error. could not create the file
-2 error. could not read the file
-3 error. could not write the file

int remove a lock
unlock_file (char *file)

This routine releases the lock by unlinking file. This routine does NOT check to
see that the process unlocking the file is the one which created the lock. The file
is simply unlinked. Programs should of course unlock the lock if they created it.
(Note, however, that the mechanism correctly handles abandoned locks.)

271

17 Lock Library

Return codes:
1 ok. lock file was removed
0 ok. lock file was never there
-1 error. lock file remained after attempt to remove it.

sectionUse and Limitations

It is worth noting that the process id used to lock the file does not have to be the process id
of the process which actually creates the lock. It could be the process id of a parent process.
The GRASS start-up shells, for example, invoke an auxiliary ”locking” module that is told the
file name and the process id to use. The start-up shells simply use a hidden file in the user’s
home directory as the lock file,1 and their own process id as the locking pid, but let the auxiliary
module actually do the locking (since the lock must be done by a program, not a shell script).
The only consideration is that the parent process not exit and abandon the lock.

Warning. Locking based on process ids requires that all processes which access the lock file
run on the same cpu. It will not work under a network environment since a process id alone
(without some kind of host identifier) is not sufficient to identify a process.

17.3 Loading the Lock Library

The library is loaded by specifying $(LOCKLIB) in the Gmakefile. The following example is a
complete Gmakefile which compiles code that uses this library:

Gmakefile for $(LOCKLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(LOCKLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(LOCKLIB)

$(LOCKLIB): # in case the library changes

See 11 Compiling and Installing GRASS Modules (p. 69) for a complete discussion of Gmake-
files.

1This file is .gislock (GRASS 4.x) and .gislock5 (GRASS 5.x).

272

18 Rowio Library

18.1 Introduction

Sometimes it is necessary to process large files which contain data in a matrix format and keep
more than one row of the data in memory at a time. For example, suppose a module were
required to look at five rows of data of input to produce one row of output (neighborhood
function). It would be necessary to allocate five memory buffers, read five rows of data into
them, and process the data in the five buffers. Then the next row of data would be read into the
first buffer, overwriting the first row, and the five buffers would again be processed, etc. This
memory management complicates the programming somewhat and is peripheral to the function
being developed.

The Rowio Library routines handle this memory management. These routines need to know the
number of rows of data that are to be held in memory and how many bytes are in each row.
They must be given a file descriptor open for reading. In order to abstract the file i/o from the
memory management, the programmer also supplies a subroutine which will be called to do the
actual reading of the file. The library routines efficiently see to it that the rows requested by the
module are in memory.

Also, if the row buffers are to be written back to the file, there is a mechanism for handling this
management as well.

Note. All routines and global variables in this library, documented or undocumented, start with
the prefix ro wio_. To avoid name conflicts, programmers should not create variables or routines
in their own modules which use this prefix.

An alphabetic index is provided in A.8 Appendix H: Index to Rowio Library (p. 453).

18.2 Rowio Routine Synopses

The routines in the Rowio Library are described below. They use a data structure called RO
WIO which is defined in the header file ”rowio.h” that must be included in any code using these
routines:1

include ”rowio.h”

1The GRASS compilation process, described in 11 Compiling and Installing GRASS Modules (p. 69), automati-
cally tells the C compiler how to find this and other GRASS header files.

273

18 Rowio Library

intconfigure rowio
structure rowio_setup (ROWIO *r, int fd, int nrows, int len, int (*getrow)(), int (*putrow)())

Rowio_setup() initializes the ROWIO structure r and allocates the required mem-
ory buffers. The file descriptor fd must be open for reading. The number of rows
to be held in memory is nrows. The length in bytes of each row is len. The routine
which will be called to read data from the file is getrow() and must be provided
by the programmer. If the application requires that the rows be written back into
the file if changed, the file descriptor fd must be open for write as well, and the
programmer must provide a putrow() routine to write the data into the file. If no
writing of the file is to occur, specify NULL for putrow().
Return codes:
1 ok
-1 there is not enough memory for buffer allocation

The getrow() routine will be called as follows:

getrow (fd, buf, n, len)
int fd;
char *buf;
int n, len;

When called, getrow() should read data for row n from file descriptor fd into buf for len bytes.
It should return 1 if the data is read ok, 0 if not.

The putrow() routine will be called as follows:

putrow (fd, buf, n, len)
int fd;
char *buf;
int n, len;

When called, putrow() should write data for row n to file descriptor fd from buf for len bytes.
It should return 1 if the data is written ok, 0 if not.

char *read a row
rowio_get (ROWIO *r, int n)

Rowio_get() returns a buffer which holds the data for row n from the file associated
with ROWIO structure r. If the row requested is not in memory, the getrow()
routine specified in rowio_setup is called to read row n into memory and a pointer to
the memory buffer containing the row is returned. If the data currently in the buffer
had been changed by rowio_put, the putrow() routine specified in rowio_setup is

274

18.2 Rowio Routine Synopses

called first to write the changed row to disk. If row n is already in memory, no disk
read is done. The pointer to the data is simply returned.
Return codes:
NULL n is negative, or
getrow() returned 0 (indicating an error condition).
!NULL pointer to buffer containing row n.

int forget a row
rowio_forget (ROWIO *r, int n)

Rowio_forget() tells the routines that the next request for row n must be satisfied
by reading the file, even if the row is in memory.
For example, this routine should be called if the buffer returned by rowio_get is
later modified directly without also writing it to the file. See 18.3 Rowio Program-
ming Considerations (p. 276).

int get file
descriptorrowio_fileno (ROWIO *r)

Rowio_fileno() returns the file descriptor associated with the ROWIO structure.

int free allocated
memoryrowio_release (ROWIO *r)

Rowio_release() frees all the memory allocated for ROWIO structure r. It does not
close the file descriptor associated with the structure.

int write a row
rowio_put (ROWIO *r, char *buf, int n)

Rowio_put() writes the buffer buf, which holds the data for row n, into the ROWIO
structure r. If the row requested is currently in memory, the buffer is simply copied
into the structure and marked as having been changed. It will be written out later.
Otherwise it is written immediately. Note that when the row is finally written to
disk, the putrow() routine specified in rowio_setup is called to write row n to the
file. rowio_flush (r) force pending updates to disk ROWIO *r;
Rowio_flush() forces all rows modified by rowio_put to be written to the file. This
routine must be called before closing the file or releasing the rowio structure if
rowio_put() has been called.

275

18 Rowio Library

18.3 Rowio Programming Considerations

If the contents of the row buffer returned by rowio_get() are modified, the programmer must
either write the modified buffer back into the file or call rowio_forget(). If this is not done, the
data for the row will not be correct if requested again. The reason is that if the row is still in
memory when it is requested a second time, the new data will be returned. If it is not in memory,
the file will be read to get the row and the old data will be returned. If the modified row data is
written back into the file, these routines will behave correctly and can be used to edit files. If it
is not written back into the file, rowio_forget() must be called to force the row to be read from
the file when it is next requested.

Rowio_get() returns NULL if getrow() returns 0 (indicating an error reading the file), or if the
row requested is less than 0. The calling sequence for rowio_get() does not permit error codes
to be returned. If error codes are needed, they can be recorded by getrow() in global variables
for the rest of the module to check.

18.4 Loading the Rowio Library

The library is loaded by specifying $(ROWIOLIB) in the Gmakefile. The following example is
a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(ROWIOLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(ROWIOLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(ROWIOLIB)

$(ROWIOLIB): # in case the library changes

See 11 Compiling and Installing GRASS Modules (p. 69) for a complete discussion of Gmake-
files.

276

19 Segment Library

19.1 Introduction

Large data files which contain data in a matrix format often need to be accessed in a nonsequen-
tial or random manner. This requirement complicates the programming.

Methods for accessing the data are to:

(1) read the entire data file into memory and process the data as a two-dimensional matrix,

(2) perform direct access i/o to the data file for every data value to be accessed, or

(3) read only portions of the data file into memory as needed.

Method (1) greatly simplifies the programming effort since i/o is done once and data access is
simple array referencing. However, it has the disadvantage that large amounts of memory may
be required to hold the data. The memory may not be available, or if it is, system paging of
the module may severely degrade performance. Method (2) is not much more complicated to
code and requires no significant amount of memory to hold the data. But the i/o involved will
certainly degrade performance. Method (3) is a mixture of (1) and (2). Memory requirements
are fixed and data is read from the data file only when not already in memory. Howev er the
programming is more complex.

The routines provided in this library are an implementation of method (3). They are based on
the idea that if the original matrix were segmented or partitioned into smaller matrices these
segments could be managed to reduce both the memory required and the i/o. Data access along
connected paths through the matrix, (i.e., moving up or down one row and left or right one
column) should benefit.

In most applications, the original data is not in the segmented format. The data must be trans-
formed from the nonsegmented format to the segmented format. This means reading the original
data matrix row by row and writing each row to a new file with the segmentation organization.
This step corresponds to the i/o step of method (1).

Then data can be retrieved from the segment file through routines by specifying the row and
column of the original matrix. Behind the scenes, the data is paged into memory as needed and
the requested data is returned to the caller.

Note. All routines and global variables in this library, documented or undocumented, start
with the prefix segment_. To avoid name conflicts, programmers should not create variables or
routines in their own modules which use this prefix.

277

19 Segment Library

An alphabetic index is provided in A.9 Appendix I: Index to Segment Library (p. 454).

19.2 Segment Routines

The routines in the Segment Library are described below, more or less in the order they would
logically be used in a module. They use a data structure called SEGMENT which is defined in
the header file ”segment.h” that must be included in any code using these routines:1

include ”segment.h”

The first step is to create a file which is properly formatted for use by the Segment Library
routines:

intformat a
segment file segment_format (int fd, int nrows, int ncols, int srows, int scols, int len)

The segmentation routines require a disk file to be used for paging segments in
and out of memory. This routine formats the file open for write on file descriptor
fd for use as a segment file. A segment file must be formatted before it can be
processed by other segment routines. The configuration parameters nrows, ncols,
srows, scols, and len are written to the beginning of the segment file which is then
filled with zeros.
The corresponding nonsegmented data matrix, which is to be transferred to the
segment file, is nrows by ncols. The segment file is to be formed of segments
which are srows by scols. The data items have length len bytes. For example, if
the data type is int, len is sizeof(int).
Return codes are: 1 ok; else -1 could not seek or write fd, or -3 illegal configuration
parameter(s).

The next step is to initialize a SEGMENT structure to be associated with a segment file format-
ted by segment_format.

intinitialize
segment

structure
segment_init (SEGMENT *seg, int fd, int nsegs)

Initializes the seg structure. The file on fd is a segment file created by seg-
ment_format and must be open for reading and writing. The segment file con-
figuration parameters nrows, ncols, srows, scols, and len, as written to the file by

1The GRASS compilation process, described in 11 Compiling and Installing GRASS Modules (p. 69), automati-
cally tells the C compiler how to find this and other GRASS header files.

278

19.2 Segment Routines

segment_format, are read from the file and stored in the seg structure. Nsegs spec-
ifies the number of segments that will be retained in memory. The minimum value
allowed is 1.
Note. The size of a segment is scols*srows*len plus a few bytes for managing each
segment.
Return codes are: 1 if ok; else -1 could not seek or read segment file, or -2 out of
memory.

Then data can be written from another file to the segment file row by row:

int write row to
segment filesegment_put_row (SEGMENT *seg, char *buf, int row)

Transfers nonsegmented matrix data, row by row, into a segment file. Seg is the
segment structure that was configured from a call to segment_init. Buf should
contain ncols*len bytes of data to be transferred to the segment file. Row specifies
the row from the data matrix being transferred.
Return codes are: 1 if ok; else -1 could not seek or write segment file.

Then data can be read or written to the segment file randomly:

int get value from
segment filesegment_get (SEGMENT *seg, char *value, int row, int col)

Provides random read access to the segmented data. It gets len bytes of data into
value from the segment file seg for the corresponding row and col in the original
data matrix.
Return codes are: 1 if ok; else -1 could not seek or read segment file.

int put value to
segment filesegment_put (SEGMENT *seg, char *value, int row, int col)

Provides random write access to the segmented data. It copies len bytes of data
from value into the segment structure seg for the corresponding row and col in the
original data matrix.
The data is not written to disk immediately. It is stored in a memory segment until
the segment routines decide to page the segment to disk.
Return codes are: 1 if ok; else -1 could not seek or write segment file.

After random reading and writing is finished, the pending updates must be flushed to disk:

279

19 Segment Library

int flush pending
updates to disksegment_flush (SEGMENT *seg)

Forces all pending updates generated by segment_put to be written to the segment
file seg. Must be called after the final segment_put() to force all pending updates
to disk. Must also be called before the first call to segment_get_row.

Now the data in segment file can be read row by row and transferred to a normal sequential data
file:

intread row from
segment file segment_get_row (SEGMENT *seg, char *buf, int row)

Transfers data from a segment file, row by row, into memory (which can then be
written to a regular matrix file). Seg is the segment structure that was configured
from a call to segment_init. Buf will be filled with ncols*len bytes of data corre-
sponding to the row in the data matrix.
Return codes are: 1 if ok; else -1 could not seek or read segment file.

Finally, memory allocated in the SEGMENT structure is freed:

intfree allocated
memory segment_release (SEGMENT *seg)

Releases the allocated memory associated with the segment file seg. Does not close
the file. Does not flush the data which may be pending from previous segment_put
calls.

19.3 How to Use the Library Routines

The following should provide the programmer with a good idea of how to use the Segment
Library routines. The examples assume that the data is integer. The first step is the creation and
formatting of a segment file. A file is created, formatted and then closed:

fd = creat (file,0666);
segment_format (fd, nrows, ncols, srows, scols, sizeof(int));
close(fd);

The next step is the conversion of the nonsegmented matrix data into segment file format. The
segment file is reopened for read and write, initialized, and then data read row by row from the
original data file and put into the segment file:

280

19.3 How to Use the Library Routines

int buf[NCOLS];
SEGMENT seg;
fd = open (file, 2); segment_init (&seg, fd, nseg)
for (row = 0; row < nrows; row++)
{
<code to get original matrix data for row into buf>
segment_put_row (&seg, buf, row);
}

Of course if the intention is only to add new values rather than update existing values, the step
which transfers data from the original matrix to the segment file, using segment_put_row(),
could be omitted, since segment_format will fill the segment file with zeros.

The data can now be accessed directly using segment_get. For example, to get the value at a
given row and column:

int value;
SEGMENT seg;
segment_get (&seg, &value, row, col);

Similarly segment_put can be used to change data values in the segment file:

int value;
SEGMENT seg;
value = 10;
segment_put (&seg, &value, row, col);

Warning. It is an easy mistake to pass a value directly to segment_put(). The following should
be avoided:

segment_put (&seg, 10, row, col); /* this will not work */

Once the random access processing is complete, the data would be extracted from the segment
file and written to a nonsegmented matrix data file as follows:

segment_flush (&seg);
for (row = 0; row < nrows; row++)
{
segment_get_row (&seg, buf, row);
<code to put buf into a matrix data file for row>
}

Finally, the memory allocated for use by the segment routines would be released and the file
closed:

281

19 Segment Library

segment_release (&seg);
close (fd);

Note. The Segment Library does not know the name of the segment file. It does not attempt
to remove the file. If the file is only temporary, the programmer should remove the file after
closing it.

19.4 Loading the Segment Library

The library is loaded by specifying $(SEGMENTLIB) in the Gmakefile. The following example
is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(SEGMENTLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(SEGMENTLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(SEGMENTLIB)

$(SEGMENTLIB): # in case the library changes

See 11 Compiling and Installing GRASS Modules (p. 69) for a complete discussion of Gmake-
files.

282

20 Vask Library

20.1 Introduction

The Vask Library (visual-ask) provides an easy means to communicate with a user one page at a
time. That is, a page of text can be provided to the user with information and question prompts.
The user is allowed to move the cursor1 from prompt to prompt answering questions in any
desired order. Users’ answers are confined to the programmer-specified screen locations.

This interface is used in many interactive GRASS modules.2 For the user, the Vask Library pro-
vides a very consistent and simple interface. It is also fairly simple and easy for the programmer
to use.

Note. All routines and global variables in this library, documented or undocumented, start with
the prefix V_. To avoid name conflicts, programmers should not create variables or routines in
their own modules which use this prefix.

An alphabetic index is provided in A.10 Appendix J: Index to Vask Library (p. 454).

20.2 Vask Routine Synopses

The routines in the Vask Library are described below, more or less in the order they would
logically be used in a module. The Vask Library maintains a private data space for recording
the screen description. With the exception of V_call(), which does all the screen painting and
user interaction, vask routines only modify the screen description and do not update the screen
itself.

int initialize screen
descriptionV_clear ()

This routine initializes the screen description information, and must be called be-
fore each new screen layout description.

1The functions in this library make use of the curses library and termcap descriptios. As when using vi, the user
must have the TERM variable set.

2The GRASS g.region command is a good example, as are r.reclass and r.mask.

283

20 Vask Library

intadd line of text
to screen V_line (int num, char *text)

This routine is used to place lines of text on the screen. Row is an integer value of
0-22 specifying the row on the screen where the text is placed. The top row on the
screen is row 0.
Warning. V_line() does not copy the text to the screen description. It only saves
the text address. This implies that each call to V_line() must use a different text
buffer.

intdefine screen
constant V_const (Ctype *value, char type, int row, int col, int len)

Ctype is one of int, long, float, double, or char.

intdefine screen
question V_ques (Ctype *value, char type, int row, int col, int len)

Ctype is one of int, long, float, double, or char.
These two calls use the same syntax. V_const() and V_ques() specify that the
contents of memory at the address of value are to be displayed on the screen at
location row, col for len characters. V_ques() further specifies that this screen
location is a prompt field. The user will be allowed to change the field on the
screen and thus change the value itself. V_const() does not define a prompt field,
and thus the user will not be able to change these values.
Value is a pointer to an int, long, float, double, or char string. Type specifies what
type value points to: ’i’ (int), ’l’ (long), ’f’ (float), ’d’ (double), or ’s’ (character
string). Row is an integer value of 0-22 specifying the row on the screen where
the value is placed. The top row on the screen is row 0. Col is an integer value of
0-79 specifying the column on the screen where the value is placed. The leftmost
column on the screen is column 0. Len specifies the number of columns that the
value will use.
Note that the size of a character array passed to V_ques() must be at least one
byte longer than the length of the prompt field to allow for NULL termination.
Currently, you are limited to 20 constants and 80 variables.
Warning. These routines store the address of value and not the value itself. This
implies that different variables must be used for different calls. Programmers will
instinctively use different variables with V_ques(), but it is a stumbling block
for V_const(). Also, the programmer must initialize value prior to calling these
routines.3

3Technically value needs to be initialized before the call to V_call() since V_const() and V_ques() only store the
address of value. V_call() looks up the values and places them on the screen.

284

20.2 Vask Routine Synopses

int set number of
decimal placesV_float_accuracy (int num)

V_float_accuracy() defines the number of decimal places in which floats and
doubles are displayed or accepted. Num is an integer value defining the number of
decimal places to be used. This routine affects subsequent calls to V_const() and
V_ques(). Various inputs or displayed constants can be represented with different
numbers of decimal places within the same screen display by making different calls
to V_float_accuracy() before calls to V_ques() or V_const(). V_clear() resets the
number of decimal places to the default (which is unlimited).

int interact with
the userV_call ()

V_call() clears the screen and writes the text and data values specified by V_line(),
V_ques() and V_const() to the screen. It interfaces with the user, collecting user
responses in the V_ques() fields until the user is satisfied. A message is automat-
ically supplied on line number 23, explaining to the user to enter an ESC when
all inputs have been supplied as desired. V_call() ends when the user hits ESC
and returns a value of 1 (but see V_intrpt_ok() below). No error checking is done
by V_call(). Instead, all variables used in V_ques() calls must be checked upon
return from V_call(). If the user has supplied inappropriate information, the user
can be informed, and the input prompted for again by further calls to V_call().

int allow ctrl-c
V_intrpt_ok ()

V_call() normally only allows the ESC character to end the interactive input ses-
sion. Sometimes it is desirable to allow the user to cancel the session. To pro-
vide this alternate means of exit, the programmer can call V_intrpt_ok() before
V_call(). This allows the user to enter Ctrl-C, which causes V_call() to return a
value of 0 instead of 1.
A message is automatically supplied to the user on line 23 saying to use Ctrl-C to
cancel the input session. The normal message accompanying V_call() is moved
up to line 22.
Note. When V_intrpt_ok() is called, the programmer must limit the use of
V_line(), V_ques(), and V_const() to lines 0-21.

int change ctrl-c
messageV_intrpt_msg (char *text)

285

20 Vask Library

A call to V_intrpt_msg() changes the default V_intrpt_ok() message from (OR
<Ctrl-C> TO CANCEL) to (OR <Ctrl-C> TO msg). The message is (re)set to the
default by V_clear().

20.3 An Example Program

Following is the code for a simple module which will prompt the user to enter an integer, a
floating point number, and a character string.

define LEN 15

main()

{

int i ; /* the variables */

float f ;

char s[LEN] ;

i=0; /*initialize the variables */

f = 0.0 ;

*s = 0 ;

V_clear() ; /* clear vask info */

V_line(5, ” Enter an Integer ”) ; /* the text */

V_line(7, ” Enter a Decimal ”) ;

V_line(9, ” Enter a character string ”) ;

V_ques (&i, ’i’, 5, 30, 5) ; /* the prompt fields */

V_ques (&f, ’f’, 7, 30, 5) ;

V_ques (s, ’s’, 9, 30, LEN - 1) ;

V_intrpt_ok(); /* allow ctrl-c */

if (!V_call()) /* display and get user input */

exit(1); /* exit if ctrl-c */

fprintf(stdout, ”%d %f %s - n”, i, f, s) ; /* ESC, so print results */

286

20.4 Loading the Vask Library

exit(0);

}

The user is presented with the following screen:

Enter an Integer 0 ____

Enter a Decimal 0.00 _

Enter a character string _________

AFTER COMPLETING ALL ANSWERS, HIT <ESC><ENTER> TO CONTINUE (OR <Ctrl-
C> TO CANCEL)

The user has several options.

<CR> moves the cursor to the next prompt field.

CTRL-K moves the cursor to the previous prompt field.

CTRL-H moves the cursor backward nondestructively within the field.

CTRL-L moves the cursor forward nondestructively within the field. CTRL-A writes a copy of
the screen to a file named visual_ask in the user’s home directory.

ESC returns control to the calling module with a return value of 1.

CTRL-C returns control to the calling module with a return value of 0. Displayable ascii char-
acters typed by the user are accepted and displayed. Control characters (other than those with
special meaning listed above) are ignored.

20.4 Loading the Vask Library

Compilations must specify the vask, curses, and termcap libraries. The library is loaded by
specifying $(VASK) and $(VASKLIB) in the Gmakefile. The following example is a complete
Gmakefile which compiles code that uses this library:

Gmakefile for $(VASK)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(VASKLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(VASK)

287

20 Vask Library

$(VASKLIB): # in case the library changes

Note. The target pgm depends on the object files $(OBJ) and the Vask Library $(VASKLIB).
This is done so that modifications to any of the $(OBJ) files or to the $(VASKLIB) itself will
force module reloading. Linking against the Vask library is performed using $(VASKLIB)
$(CURSES), it specifies both the UNIX curses and termcap/terminfo libraries as well as $(VASKLIB).

See 11 Compiling and Installing GRASS Modules (p. 69) for a complete discussion of Gmake-
files.

20.5 Programming Considerations

The order of movement from prompt field to prompt field is dependent on the ordering of calls
to V_ques(), not on the line numbers used within each call. Information cannot be entered
beyond the edges of the prompt fields. Thus, the user response is limited by the number of
spaces in the prompt field provided in the call to V_ques(). Some interpretation of input occurs
during the interactive information gathering session. When the user enters <CR> to move to the
next prompt field, the contents of the current field are read and rewritten according to the value
type associated with the field. For example, nonnumeric responses (e.g., ”abc”) in an integer
field will get turned to a 0, and floating point numbers will be truncated (e.g., 54.87 will become
54).

No error checking (other than matching input with variable type for that input field) is done by
V_call(). This must be done, by the programmer, upon return from V_call(). Calls to V_line(),
V_ques(), and V_const() store only pointers, not contents of memory. At the time of the call
to V_call(), the contents of memory at these addresses are copied into the appropriate places
of the screen description. Care should be taken to use distinct pointers for different fields and
lines of text. For example, the following mistake should be avoided:

char

text[100];

V_clear();

sprintf(text,” Welcome to GRASS ”);

V_line(3,text);

sprintf(text,” which is a product of the US Army CERL ”);

V_line(5,text);

V_call();

since this results in the following (unintended) screen:

288

20.5 Programming Considerations

which is a product of the GRASS Development Team

which is a product of the GRASS Development Team

AFTER COMPLETING ALL ANSWERS, HIT <ESC><ENTER> TO CONTINUE

(OR <Ctrl-C> TO CANCEL)

Warning. Due to a problem in a routine within the curses library,4 the Vask routines use the
curses library in a somewhat unorthodox way. This avoided the problem within curses, but
means that the programmer cannot mix the use of the Vask Library with direct calls to curses
routines. Any module using the Vask Library should not call curses library routines directly.

4Specifically, memory allocated by initscr() was not freed by endwin().

289

20 Vask Library

290

21 Projection and Datum support

21.1 Supported projections

GRASS Projection software is based on PROJ4 (developed until 1995 by USGS)

(http://www.remotesensing.org/proj/).

For cartographic GRASS functions see also 12.7.3 Projection Information (p. 96).

ll -- Lat/Lon
utm -- Universe Transverse Mercator
stp -- State Plane
aea -- Albers Equal Area
lcc -- Lambert Conformal Conic
merc -- Mercator
tmerc -- Transverse Mercator
leac -- Lambert Equal Area Conic
laea -- Lambert Azimuthal Equal Area
aeqd -- Azimuthal Equidistant
airy -- Airy
aitoff -- Aitoff
alsk -- Mod. Stererographics of Alaska
apian -- Apian Globular I
august -- August Epicycloidal
bacon -- Bacon Globular
bipc -- Bipolar conic of western hemisphere
boggs -- Boggs Eumorphic
bonne -- Bonne (Werner lat_1=90)
cass -- Cassini
cc -- Central Cylindrical
cea -- Equal Area Cylindrical
chamb -- Chamberlin Trimetric
collg -- Collignon
crast -- Craster Parabolic (Putnins P4)
denoy -- Denoyer Semi-Elliptical
eck1 -- Eckert I
eck2 -- Eckert II
eck3 -- Eckert III
eck4 -- Eckert IV
eck5 -- Eckert V
eck6 -- Eckert VI
eqc -- Equidistant Cylindrical (Plate Caree)
eqdc -- Equidistant Conic
euler -- Euler
fahey -- Fahey
fouc -- Foucaut

291

http://www.remotesensing.org/proj/

21 Projection and Datum support

fouc_s -- Foucaut Sinusoidal
gall -- Gall (Gall Stereographic)
gins8 -- Ginsburg VIII (TsNIIGAiK)
gn_sinu -- General Sinusoidal Series
gnom -- Gnomonic
goode -- Goode Homolosine
gs48 -- Mod. Stererographics of 48 U.S.
gs50 -- Mod. Stererographics of 50 U.S.
hammer -- Hammer & Eckert-Greifendorff
hatano -- Hatano Asymmetrical Equal Area
imw_p -- International Map of the World Polyconic
kav5 -- Kavraisky V
kav7 -- Kavraisky VII
labrd -- Laborde
lagrng -- Lagrange
larr -- Larrivee
lask -- Laskowski
lee_os -- Lee Oblated Stereographic
loxim -- Loximuthal
lsat -- Space oblique for LANDSAT
mbt_s -- McBryde-Thomas Flat-Polar Sine (No. 1)
mbt_fps -- McBryde-Thomas Flat-Pole Sine (No. 2)
mbtfpp -- McBride-Thomas Flat-Polar Parabolic
mbtfpq -- McBryde-Thomas Flat-Polar Quartic
mbtfps -- McBryde-Thomas Flat-Polar Sinusoidal
mil_os -- Miller Oblated Stereographic
mill -- Miller Cylindrical
mpoly -- Modified Polyconic
moll -- Mollweide
murd1 -- Murdoch I
murd2 -- Murdoch II
murd3 -- Murdoch III
nell -- Nell
nell_h -- Nell-Hammer
nicol -- Nicolosi Globular
nsper -- Near-sided perspective
nzmg -- New Zealand Map Grid
ob_tran -- General Oblique Transformation
ocea -- Oblique Cylindrical Equal Area
oea -- Oblated Equal Area
omerc -- Oblique Mercator
ortel -- Ortelius Oval
ortho -- Orthographic
pconic -- Perspective Conic
poly -- Polyconic (American)
putp1 -- Putnins P1
putp2 -- Putnins P2
putp3 -- Putnins P3
putp3p -- Putnins P3’
putp4p -- Putnins P4’
putp5 -- Putnins P5
putp5p -- Putnins P5’
putp6 -- Putnins P6
putp6p -- Putnins P6’
qua_aut -- Quartic Authalic
robin -- Robinson
rpoly -- Rectangular Polyconic
sinu -- Sinusoidal (Sanson-Flamsteed)
somerc -- Swiss. Obl. Mercator

292

21.2 GRASS and the PROJ4 projection library

stere -- Stereographic
tcc -- Transverse Central Cylindrical
tcea -- Transverse Cylindrical Equal Area
tissot -- Tissot
tpeqd -- Two Point Equidistant
tpers -- Tilted perspective
ups -- Universal Polar Stereographic
urm5 -- Urmaev V
urmfps -- Urmaev Flat-Polar Sinusoidal
vandg -- van der Grinten (I)
vandg2 -- van der Grinten II
vandg3 -- van der Grinten III
vandg4 -- van der Grinten IV
vitk1 -- Vitkovsky I
wag1 -- Wagner I (Kavraisky VI)
wag2 -- Wagner II
wag3 -- Wagner III
wag4 -- Wagner IV
wag5 -- Wagner V
wag6 -- Wagner VI
wag7 -- Wagner VII
weren -- Werenskiold I
wink1 -- Winkel I
wink2 -- Winkel II
wintri -- Winkel Tripel

21.2 GRASS and the PROJ4 projection library

GRASS utilizes the PROJ4 library developed by Gerald Evenden/USGS (Cartographic Pro-
jection Procedures for the UNIX Environment – A User’s Manual, (Evenden, 1990, Open-file
report 90-284).). However, the PROJ4 functions are commonly used through wrapper functions
in a GRASS environment.

Internally to the PROJ.4 library, projection may involve transformation to and from geodetic co-
ordinates (latitude and longitude), and numerical corrections to account for different datums.

This is transparent for the user as input and output parameters are either read from PROJ_INFO
& PROJ_UNITS files (v.proj, r.proj, s.proj) or read from user prompts (m.proj2).

In GRASS the wrapper functions in src/libes/proj/get_proj.c makes the preparations to set up
the parameter strings and init the info-structures, while do_proj.c contains the actual projection
calls.

21.2.1 Include Files

All modules using the PROJ4 library should include the header file projects.h like this:

#include "projects.h"

293

21 Projection and Datum support

In the Gmakefile a reference to $(GPROJLIB) is required.

21.2.2 Initialization

intInitialize
pj_info pj_zero_proj (struct pj_info *info)

This function is deprecated and it may be removed in the future.
Initialization of PROJ info structure to "no data". Use of this function is not neces-
sary since its contents are duplicated inside both pj_get_kv and pj_get_string, one
or other of which must be called to set up the projection parameters.

intGet projection
key values pj_get_kv(struct pj_info *info, struct Key_Value *in_proj_keys, struct Key_Value

*in_units_keys)

Get projection key values from current location settings (PERMA-
NENT/PROJ_INFO and PERMANENT/PROJ_UNITS files).

intRead in
projection

settings
pj_get_string(struct pj_info *info, char *str)

Reads in projection settings.

21.2.3 Projection of coordinate pairs

intProject x,y
pj_do_proj(double *x, double *y, struct pj_info *info_in, struct pj_info *info_out)

Project the given coordinate pair (x, y) from a projection defined in info_in to
projection defined in info_out.

intProject x,y,h
pj_do_transform(int count, double *x, double *y, double *h, struct pj_info *info_in, struct
pj_info *info_out)

294

21.2 GRASS and the PROJ4 projection library

Project the given coordinate triple (x, y, h) from a projection defined in info_in to
projection defined in info_out. x, y and h should be three arrays of equal length;
count is the number of points to be transformed.

Both pj_do_proj and pj_do_transform will perform datum transformation if one of the datum
identifiers (datum, (dx, dy, and dz), towgs84, or nadgrids) is supplied for both the input and
output projections.

21.2.4 Programming Example

Below is outlined a draft PROJ4 programming example using the GRASS-PROJ4 environment.
It reads the current location projection information and converts a given coordinate pair match-
ing this projection to lat/long.

#include <math.h>
#include <string.h>
#include <stdio.h>
#include "gis.h"
#include "projects.h"

int main (int argc, char **argv)
{

struct Key_Value *in_proj_info, *in_unit_info; /* input projection */
struct pj_info iproj; /* input map proj parameters */
struct pj_info oproj; /* output map proj parameters */
UV data;
double longitude, latitude; /* coordinate pair to be transformed */

G_gisinit(argv[0]);

/* preset coordinates, must match location projection settings */
longitude=3578000.0; /* Transverse Mercator, Gauss-Krueger */
latitude=5770000.0;

fprintf(stderr, "IN: longitude: %f, latitude: %f\n", longitude, latitude);

/* if location/coordinate pair are not in lat/long format, transform them: */
if ((G_projection() != PROJECTION_LL))
{
fprintf(stderr, "Transforming input coordinates to lat/long\n");

/* read current projection info */
if ((in_proj_info = G_get_projinfo()) == NULL)

G_fatal_error("Can’t get projection info of current location");

if ((in_unit_info = G_get_projunits()) == NULL)
G_fatal_error("Can’t get projection units of current location");

if (pj_get_kv(&iproj, in_proj_info, in_unit_info) < 0)
G_fatal_error("Can’t get projection key values of current location");

295

21 Projection and Datum support

/* set output projection to lat/long*/
pj_get_string(&oproj, (char *)NULL);

/* Now do the transform:
* order: in/outx in/outy in_info out_info */

if(pj_do_proj(&longitude, &latitude, &iproj, &oproj) < 0)
{

fprintf(stderr,"Error in pj_do_proj\n");
exit(0);

}
}

fprintf(stderr, "OUT: longitude: %f, latitude: %f\n", longitude, latitude);
}

21.3 Coordinate Conversion Library (coorcnv)

Most of the information presented here was derived from the source code of the coordinate
conversion library and from the manuals and source code of the modules using this library.
There are no hints on the authors name in the code. The modules have been written by Michael
Shapiro of US Army CERL (the library too?).

21.3.1 Introduction to the Coordinate Conversion Library

The Coordinate Conversion Library provides functions for latitude-longitude calculations, e. g.
for projecting latitude-longitude to universal transverse mercator (UTM) and transverse mer-
cator (tm), for inverse projection to latitude-longitude, for calculating datum shifts on latitude-
longitude coordinates, for scanning coordinates from strings and converting of latitude-longitude
coordinates to geocentric coordinates and vice versa.

Some of this functionality is already included in the 12 GIS Library (p. 79) and in the PROJ.4
projection library. Some functions are wrappers for appropriate functions from the GIS Library,
this was introduced to maintain compatibility with old programming code while introducing
support for centralized tables for ellipsoid and map datum parameters.

The library is not fully tested, so use this with care.

Parts of the library are in parallel to functions from the GIS Library and the PROJ.4 library
in GRASS. No checks have been done so far to validate that the functions give numerically
identical results.

21.3.1.1 Include Files

All modules using the coorcnv library should include the header file CC.h like this:

296

21.3 Coordinate Conversion Library (coorcnv)

#include “CC.h”

The modules using this library must always be linked with the math library and the GIS Library,
as the library itself needs internally functions from the GIS Library.

21.3.2 Future plans for enhanced map datum support

Update (January 2003): Datum transformation is handled automatically by the PROJ.4 library.
Already datum, dx, dy and dz are valid keywords in the PROJ_INFO file. This will be extended
to allow towgs84 (for 7-parameter transformation or 3-parameter—alternative notation to dx
dy dz) and nadgrids (to use tables for accurate localised shifting between NAD27 and NAD83
datums).

The GRASS datum.table format will be extended to include the towgs84 and nadgrids param-
eters in addition to dx dy and dz, where available or contributed by users, and in the end only
underlying parameters, not ellipsoid or datum names will be passed to PROJ.4. This will allow
for historical differences in naming conventions. None of the GRASS ellipsoid or datum names
may ever be changed as this would break existing installations.

%% remove if not applicable or make formatted text
This are the neccessary steps to get
full map datum support within GRASS:

- change coorcnv library calls to use \$GISBASE/etc/datum.table
done.

- change coorcnv library to use ellipsoids in
\$GISBASE/etc/ellipse.table
done.

- add datum support functions to coorcnv library:
datum shift parameters:
+ CC_get_datum_by_name
+ CC_get_datum_by_nbr
x CC_datum_name
x CC_datum_description
+ CC_datum_ellipsoid
x CC_datum_shift -> CC_get_datum_parameters
+ CC_get_datum_parameters (or CC_get_datum_parameters3?)

CC_get_datum_parameters7

spheroid/ellipsoid parameters:
(only wrappers for libgis calls!)
* CC_get_spheroid
* CC_spheroid_name
+ CC_get_spheroid_by_name
+ CC_get_spheroid_by_nbr
(reworked an new gislib calls)
+ G_ellipsoid_name
+ G_get_spheroid_by_name (for f parameter)
+ G_ellipsoid_name
+ G_ellipsoid_description

297

21 Projection and Datum support

* G_get_ellipsoid_by_name
* G_get_ellipsoid_parameters

datum shift routines:
+ CC_datum_shift_Molodensky
+ CC_datum_to_datum_shift_M
+ CC_datum_shift_CC
+ CC_datum_to_datum_shift_CC
+ CC_datum_shift_BursaWolf
+ CC_datum_to_datum_shift_BW

others:
+ CC_geo2lld
+ CC_lld2geo

symbols:
? not known
x changable, because not used in any module
* existing, not changable
+ new

not yet implemented
mostly done, needs testing.

- change m.datum.shift to new library calls
done, needs testing.

- add functions for low-level datum support to gislib
(in analogy to the ellipsoid and projection functions):
add metadata (datum name and parameters) to PROJ_INFO
to every PERMAMENT mapset of locations.
This is done via g.setproj i assume (please correct me
if i am wrong!)

proposed format:
datum: acronym
ellips: acronym -> already there
dx: -> shifting parameter dx relative to wgs84
dy: -> dy
dz: -> dz
a: -> already in PROJ_INFO
e2: -> already in PROJ_INFO
f: -> from datum.table
e_desc: ellipsoid description
d_desc: datum description

- add a function to read the datum parameters for the
actual location (parallel to G_database_projection_name
and G_get_ellipsoid_parameters)
+ G_database_datum_name()
+ G_get_datum_parameters(a, e2, f, dx, dy, dz)
+ G_get_datum_parameters7(a, e2, f, dx, dy, dz, rx, ry, rz, m)

- add G_ask_datum_name for interactive use in modules
+ G_ask_datum_name()
done.

- change all modules that create new locations to
ask the user for a map datum and add to PROJ_INFO file.
This is done via g.setproj?

298

21.3 Coordinate Conversion Library (coorcnv)

- change all modules that do projection or data-import
to use datum conversion:
v.proj
r.proj
s.proj
r.in.*
v.in.*
etc.

Please note that i am only involved with the first steps of
changing the library to support map datums. The changes in
the modules must be done by other GRASS developers or
the module maintainers.

Andreas Lange, 05/2000,
andreas.lange@rhein-main.de

21.3.2.1 The map datum database

All map datums known within GRASS must be listed in the map datum database in the file
$GISBASE/etc/datum.table. The ellipsoid-acronym is a reference to the ellipsoid database in
the file $GISBASE/etc/ellipse.table.

The format of the map datum file is as follows:

acronym “description” ellipsoid-acronym dx= dy= dz=

The acronym is a short name (single word) datum specifier, the description gives a long name
and reference to the map datum (enclosed in double quotes).

The ellipsoid-acronym is the short name of the ellipsoid used with this map datum and refer-
enced in the ellipse.table.

dx, dy and dz are the datum shift parameters, which are applied to convert from local map datum
to wgs84 datum. The reverse calculation can be done with signs reversed.

Comments are signalled by a ’#’ at first position of the line, empty lines are discarded.

A sample entry:

World Geodetic System 1984 wgs84 “World Geodetic System 1984”
wgs84 dx=0.0 dy=0.0 dz=0.0

If you need additional map datums add them to the file. Please comment the new entry and cite
a reference for the values.

You can not use the parameters for the Molodensky datum shift formula with any other datum
shift formula. The Bursa-Wolf datum transformation needs 7 parameters (3 xyz-shift, 3 xyz-
rotational, 1 scale factor), which can not be used with any other formula. Specifically do not

299

21 Projection and Datum support

use the 3 xyz-shift parameters for the Bursa-Wolf transformation with the Molodensky formula,
as the parameters are not independent from another.

21.3.2.2 The ellipsoid database/table

21.3.3 Datum-shift related functions

Functions which provide datum shift values from the database and calculate the datum shift
with these parameters.

21.3.3.1 Reading datum parameters from database

?? ?? (p. ??)

The following functions are provided to read information from the central map datum table
(datum.table), see also the function CC_get_spheroid in section 12.8.6 Miscellaneous (p. 104)
for reading from the central ellipsoid table (ellipse.table). The transformation parameters in
datum.table are meant to transform from local datum to wgs84, reverse the sign for the reverse
transformation from wgs84 to the local datum.

intGet datum shift
parameters CC_datum_shift(const char *name, double *dx, double *dy, double *dz)

This routine sets the datum shift parameters dx, dy and dz (to be interpreted rela-
tive to the wgs84 map datum) to the value from the datum table corresponding to
the name pointed to by the variable name. Returns 1 on success, 0 on failure (e. g.
invalid name, not found in datum table).

intGet datum shift
parameters and

ellipsoid
CC_get_datum_parameters(const char *name, char *ellps, double *dx, double *dy, dou-
ble *dz)

This functions sets the datum shift parameters dx, dy and dz and the name of the
ellipsoid used with the map datum (in ellps) from the map datum table. Returns 1
on success, 0 on failure.

char *Get datum
name for nth

datum
CC_datum_name(int n)

300

21.3 Coordinate Conversion Library (coorcnv)

Returns a pointer to the name of the nth map datum from the datum table, if n is
below 0 or greater than the number of entries in the datum table returns a NULL
pointer.

char * Get datum
description for
nth datum

CC_datum_description(int n)

Returns a pointer to the textual description for the nth map datum from the datum
table. Returns a NULL pointer on failure.

char * Get ellipsoid
name for nth
datum

CC_datum_ellipsoid(int n)

Returns a pointer to the name of the ellipsoid used with the nth map datum from
the datum table. Returns a NULL pointer on failure.

int Get number of
map datumCC_get_datum_by_name(const char *name)

Get the number of the named map datum (name) from the datum table, returns the
number in the table on success, -1 on failure, e. g. if the datum is not found in the
table.

char * Get name of nth
map datumCC_get_datum_by_nbr(int n)

Get the name of the nth map datum from the datum table, returns a pointer to a
string containing the name on success, a NULL pointer on failure, e. g. if the
number is smaller than 0 or greater than the number of entries in the datum table.

21.3.3.2 Calculating a datum shift (Block Shift, Molodensky and Bursa-Wolf
transformation)

The following functions provide low-level and high-level interfaces for calculationg map datum
shifts on latitude-longitude coordinates. Sources for the formula are cited for the different
functions. Some more comments are found in the source code itself.

301

21 Projection and Datum support

21.3.3.3 Some hints on accuracy

Generally the accuracy depends on the transformation method used and the accuracy of the
parameters supplied to the transformation function. You always must check if the formula is
applicable to your problem and supplies the needed accuracy. The author of the functions refuse
any responsibility for problems that may arise out of the improper use of the functions.

The following valus can give you an idea of the accuracy of the different methods used in the
library:

block shift with cartesian coordinates 10 m

molodensky transformation 5 m

bursa-wolf transformation 1 m

3d similarity transformation 1 m (needs additional national similarity parameters)

multiple regression transformation, other methods up to 10 cm (generally not needed for GRASS)

All transformations need correct input and output ellipsoid for the calculation of Rm and Rn.
Wrong ellipsoid parameters will lead to wrong datum shifts.

In the GRASS GIS the height above the ellipsoid is not known in most cases. Set the value for
Sh to 0 for the use with the transformation functions. Of course the value for the destination
height (Dh) makes no sense in this case and should not be displayed to the user.

The ellipsoid flattening f is given to the function as the reciprocal value (1/f), even if this is not
signalled by the variable name. This value is aquired from the function G_get_spheroid_by_name()
from the 12 GIS Library (p. 79) or from the function CC_get_spheroid_by_name() from the
21.3 Coordinate Conversion Library (coorcnv) (p. 296).

intdatum shift with
block shift

transformation
CC_datum_shift_CC(double Sphi, double Slam, double Sh, double Sa, double Se2, double
*Dphi, double *Dlam, double *Dh, double Da, double De2, double dx, double dy, double
dz)

This function performs a datum shift with the block shift transformation. The val-
ues for the source ellipsoid (Sa, Se2) and the destination ellipsoid (Da, De2) must
be provided to the function as well as the shifting parameters (dx, dy, dz). Get these
parameters with calls to the CC_get_datum_shift_parameters() function from the
map datum table and CC_get_spheroid_by_name() from the ellipsoid table. In
most cases the hight above the ellipsoid (Sh) is not known and should be set to 0.
Obviously the calculated value for Dh should not be used in this case.

intdatum shift with
block shift

transformation

302

21.3 Coordinate Conversion Library (coorcnv)

CC_datum_to_datum_shift_CC(int Sdatum, double Sphi, double Slam, double Sh, int
Ddatum, double *Dphi, double *Dlam, double *Dh)

This function provides a high level access to the block shift transformation. The
numbers in Sdatum and Ddatum are the index to the map datum table for source
and destination map datum and should be set with the CC_get_datum_by_name()
function. See the introduction for a comment on Sh and Dh.

A full description of the molodensky transformation is found at: http://www.utexas.edu/depts/grg/gcraft/notes/datum/gif/molodens.gif

http://www.anzlic.org.au/icsm/gdatum/molodens.html

int datum shift with
Molodensky
transformation

CC_datum_shift_Molodensky(double Sphi, double Slam, double Sh, double Sa, double
Se2, double rSf, double *Dphi, double *Dlam, double *Dh, double Da, double De2, double
rDf, double dx, double dy, double dz)

This function provides low-level access to the Molodensky transformation. You
must provide the appropritiate values for the parameters for ellipsoid (Sa, Se2, rSf,
Da, De2, rDf) and the shifting parameters (dx, dy, dz). See the introduction for a
comment on Sh and Dh.

int datum shift with
Molodensky
transformation

CC_datum_to_datum_shift_M(int Sdatum, double Sphi, double Slam, double Sh, int Dda-
tum, double *Dphi, double *Dlam, double *Dh)

High-level access to the datum shift with Molodensky transformation. This func-
tion provides a shorthand acces to the CC_datum_shift_Molodensky() func-
tion. The numbers in Sdatum and Ddatum are the index to the map da-
tum table for source and destination map datum and should be set with the
CC_get_datum_by_name() function. See the introduction for a comment on Sh
and Dh.

For a description of the Bursa Wolf transformation see: http://www.posc.org/Epicentre.2\protect\T1\textunderscore2/DataModel/ExamplesofUsage/eu\protect\T1\textunderscorecs35.html

CAVEAT: check which sign convention you must use as european and australian/american users
use different systems. If you have no rotational parameters and/or no scaling parameter you
should use Molodensky or block transformation. The Scale value is expressed as ppm (parts per
million). Check if you really need an accuracy as high as with this!

int datum shift with
Bursa Wolf
transformation

CC_datum_shift_BursaWolf(double Sphi, double Slam, double Sh, double Sa, double Se2,
double *Dphi, double *Dlam, double *Dh, double Da, double De2, double dx, double dy,
double dz, double Rx, double Ry, double Rz, double Scale)

303

http://www.utexas.edu/depts/grg/gcraft/notes/datum/gif/molodens.gif
http://www.anzlic.org.au/icsm/gdatum/molodens.html
http://www.posc.org/Epicentre.2protect T1	extunderscore 2/DataModel/ExamplesofUsage/euprotect T1	extunderscore cs35.html

21 Projection and Datum support

This function is used to transform latitude-longitude coordinates from one map
datum to another map datum with the Bursa Wolf transformation (also known as 3d
similarity transformation. The source coordinates are given in Sphi, Slam and Sh,
the destination coordinates are stored in Dphi, Dlam and Dh. The correct values
for the source and target ellipsoid must be set in Sa, Se2, Da and De2. These values
may be obtained from the ellipsoid table with the function CC_get_spheroid(). The
7 parameters (3 shifting parameters: dx, dy, dz, 3 rotational parameters Rx, Ry,
Rz and the scaling parameterScale) must be provided to the function. The shifting
parameters are in meters and the rotational parameters are in radians, the scaling
parameter is expressed in ppm (parts per million). The function returns 0 on error,
1 on succes.

intdatum shift with
Bursa Wolf

transformation
CC_datum_to_datum_shift_BW(int Sdatum, double Sphi, double Slam, double Sh, int
Ddatum, double *Dphi, double *Dlam, double *Dh)

This function provides a high-level interface for the Bursa Wolf datum shift func-
tion CC_datum_shift_BursaWolf(). The latitude, longitude and ellipsoid heigth
(Sphi, Slam, Sh) are transformed from the map datum given as an index in Sdatum
to the the map datum indexed by Ddatum, the resulting values are stored in Dphi,
Dlam and Dh. The function returns 0 on error, 1 on success. This is currently not
fully supported as the datum database provides no values for a 7 parameter datum
shift.

21.3.4 Latitude-Longitude related functions

21.3.4.1 Formatting of latitude-longitude coordinates

intformat latitude
coordinate CC_lat_format(double lat, char *buf)

This function formats the latitude (in seconds) in lat into the buffer buf as a string
in the format dd.mm.ssH, where hemisphere H is N for northern and S for southern
hemisphere. A longitude less than zero is southern, greater than zero is northern
hemisphere.

intformat
longitude

coordinate
CC_lon_format(double lon, char *buf)

This function formats the longitude (in seconds) in lon into the buffer buf as a string
in the format ddd.mm.ssH, where hemisphere H is W for western hemisphere and

304

21.3 Coordinate Conversion Library (coorcnv)

E for eastern hemisphere. A longitude less than zero is eastern hemisphere, greater
than 0 is western hemisphere.

int format latitude
coordinate
parts

CC_lat_parts(double lat, int *deg, int *min, double *sec, char *hemisphere)

The latitude in seconds in the variable lat is formatted into the deg, min, sec and
hemisphere parts given as a pointer.

int format
longitude
coordinate
parts

CC_lon_parts(double lon, int *deg, int *min, double *sec, char *hemisphere)

The longitude in seconds in the variable lon is formatted into the deg, min, sec and
hemisphere parts given as a pointer.

21.3.4.2 Conversion of Latitude-Longitude coordinates to geocentric coordinates

int Convert
latitude-
longitude
(radians) to
geocentric

CC_ll2geo(double a, double e2, double lat, double lon, double h, double *x, double *y,
double *z)

Converts latitude and longitude (expressed in radians) to geocentric coordinates.
Inputs are the major axis of the local spheroid a, the eccentricity squared of the
spheroid e2, the latitude in arc seconds in lat, the longitude in arc seconds in lon
and the heigth above the spheroid in h at this point. The geocentric coordinates are
written into the variables given by the pointers to x, y and z. Usually in GRASS
the height above the ellipsoid h is not known. It should be approximated by 0 or
the average elevation above sea level. Obviously this introduces an error in the
calculation of the coordinates. The function should return always 0.

int convert
latitude-
longitude
(degree) to
gecentric

CC_lld2geo(double a, double e2, double lat, double lon, double h, double *x, double *y,
double *z)

The same as the preceding function G_ll2geo(), but lat and lon are given as sec-
onds degree. This function returns 1 in any case.

305

21 Projection and Datum support

21.3.4.3 Conversion of geocentric coordinates to Latitude-Longitude coordinates

intconvert
geocentric to

latitude-
longitude
(radians)

CC_geo2ll(double a, double e2, double x, double y, double z, double *lat, double *lon,
double *h, int n, double stop_delta)

Converts geocentric coordinates to geographic coordinates (in radians, arc sec-
onds). The function expects the major axis of the local spheroid in a, the square
of eccentricity in e2, the geocentric coordinates in meters in x, y and z, the maxi-
mum number of iterations when solving the equation (should be set to 50) in n and
a stop_delta value for difference to stop the calculation (should be set to 1e-11).
The function returns the number of iterations remaining or 0 if it did not converge.
The values are stored in the variables pointed to by lat and lon, the height above
the ellipsoid in meters is stored in h.

intconvert
geocentric to

latitude-
longitude
(degree)

CC_geo2lld(double a, double e2, double x, double y, double z, double *lat, double *lon,
double *h)

This function converts the geocentric coordinates in x, y and z to the geographic
latitude and longitude (in seconds degree) pointed to by lat and lon. The heigth
above the ellipsoid is stored in h (in meters). This function is a wrapper for the
CC_geo2ll() function, it supplies default values for the stop_delta and the number
of iterations n to that function and calculates seconds degree instead of radians. It
returns 1 if the calculation could be solved with 500 iterations or 0 if the iteration
could not be solved with the maximum number of iterations.

21.3.4.4 Scanning of Latitude-Longitude coordinates in strings

intscan for
latitude string CC_lat_scan(char *string, double *lat)

This functions scans for the latitude in a string of the format ddd.hh.ssH (where the
hemisphere may be S or N) and sets the result in degree in the variable pointed to
by lat. It returns 1 on success, 0 on error.

intscan for
longitude string CC_lon_scan(char *string, double *lon)

306

21.3 Coordinate Conversion Library (coorcnv)

This functions scans for the longitude in a string of the format ddd.hh.ssH (where
the hemisphere may be E or W) and sets the result in degree in the variable pointed
to by lon. It returns 1 on success, 0 on error.

21.3.4.5 Reading ellipsoid parameters from the database

12.8.6 Miscellaneous (p. 104)

The terms ellipsoid and spheroid are used interchangeable throughout this documentation. Where
possible without breaking backward compatibility the functions from the Coordinate Conver-
sion library are named with the term “spheroid” and the functions from the GIS Library with
the term “ellipsoid”.

int get spheroid
parametersCC_get_spheroid(const char *name, double *a, double *e2)

This function sets the ellipsoid parameters for the major axis a and the eccentricity
squared e2 to the values for the ellipsoid named by the variable name. If the named
spheroid is not found in the ellipsoid table, the function returns 0, on success 1 is
returned. This function is a wrapper to the function G_get_ellipsoid_by_name()
from GIS library, which should be used instead.

char get spheroid
name*CC_spheroid_name(int n)

This function returns a pointer to the abbreviated name of the nth spheroid/ellipsoid
from the datum table. If the name is not found in the table a NULL pointer is
returned. This function is retained only for backward compatibility with the ex-
isting code. The function G_ellipsoid_name() from GIS Library or the function
CC_get_spheroid_by_number() from this library should be used instead.

int get spheroid
parametersCC_get_spheroid_by_name(const char *name, double *a, double *e2, double *f)

This function sets the spheroid parameters for major axis a, the eccentricity squared
e2 and the inverse flattening f for the ellipsoid named by the variable name. If the
named spheroid is not found in the ellipsoid table, the function returns 0, on success
1 is returned. This function was introduced to provide the datum shift functions
with the value for the reciprocal flattening f.

char get spheroid
name

307

21 Projection and Datum support

C_get_spheroid_by_nbr(int n)

This function returns a pointer to the abbreviated name of the nth spheroid/ellipsoid
from the datum table. If the name is not found in the table a NULL pointer is
returned. This is only a wrapper for the function G_ellipsoid_name() from the
GIS Library.

21.3.5 Projection and inverse projection, UTM, Transverse Mercator

21.3.5.1 Inverse projection from transverse mercator to latitude-longitude and vice
versa

intset spheroid
CC_tm2ll_spheroid(char *name)

This function must be called prior to calling any CC_tm2ll() function. It sets
the spheroid parameters for the ellipse in name, returns -1 on an unrecongnized
spheroid, -2 on an internal error and 1 on success.

intset ellipsoid
parameters CC_tm2ll_spheroid_parameters(double a, double e2)

This function is called by CC_tm2ll_spheroid() to set the ellipsoid major axis a
and the eccentricity squared e2. It can be called directly for unknown ellipsoids.
Returns -2 on illegal values for a or e2, 1 on success.

intset longitude of
central

meridian
CC_tm2ll_zone(int zone)

This function must be called before invoking CC_tm2ll_north() to set the zone.
The zone value zone must be non-zero, positive means northern hemisphere, neg-
ative means southern hemisphere. It is used to set the longitude of the central
meridian used for tm to latitude-longitude conversions.

intset tm northing
CC_tm2ll_north(double northing)

This functions sets the tm
textbfnorthing and must be called before CC_tm2ll() is used. It returns -1 if the
related rectifying latitude exceeds 1.47 radians, 1 on success.

308

21.3 Coordinate Conversion Library (coorcnv)

int set tm easting
CC_tm2ll(double easting, double *lat, double *lon)

This function computes the latitude and longitude in lat and lon from the easting.
The function CC_tm2ll_north must be called first to set the northing value. Re-
turns -1 if the longitude is more than .16 radians from the center of the tm zone, 1
otherwise, i. e. on success.

int compute
latitude-
longitude from
easting

CC_ll2tm(double lat, double lon, double *easting, double *northing, int *zone)

Compute the easting, northing and zone from latitude-longitude values in lat and
lon. If the zone is not zero, the point is forced into this zone, otherwise the zone
is computed from the latitude-longitude coordinates. Returns -1 if the latitude is
above 84 degrees, -2 if the longitude is too far from the center of the zone and 1 on
success.

21.3.5.2 Inverse projection from UTM to latitude-longitude and vice versa

int utm to latitude-
longitude
conversion
initialization

CC_u2ll_spheroid(char *name)

This function must be called first to set the spheroid parameters for the ellipse with
the function CC_spheroid_name(). The function returns 1 on success, -1 on an
unrecognized spheroid and -2 on an internal error.

int get spheroid
parameters for
ellipse

CC_u2ll_spheroid_parameters(double a, double e2)

This routine is called by CC_u2ll_spheroid() to set the ellipsoid parameters for the
major axis a and the eccentricity squared e2. The function can be called directly
for unknown ellipsoids and returns 1 on success, -2 on illegal values for a or e2.

int set utm zone
CC_u2ll_zone(int zone)

This function must be called before the execution of CC_u2ll_north() to set the
longitude of the central meridian for utm to latitude-longitude conversions. The
value for zone must be non-zero, positive value means northern hemisphere, nega-
tive value means southern hemisphere. Always returns 0.

309

21 Projection and Datum support

intset the utm
north CC_u2ll_north(double northing)

This routine must be called befor CC_u2ll() is invoked in order to set the utm north.
Returns 1 on success, -1 if the related rectifying latitude exceeds 1.47 radians.

intcompute
latitude-

longitude from
east

CC_u2ll(double easting, double *lat, double *lon)

This functions computes latitude-longitude in lat and lon from the easting,
CC_u2ll_north() must be already called with the northing value. Returns 1 on
success, -1 if lon is more than .16 radians from the center of the utm zone.

intcompute utm
easting and

northing from
latitude-

longitude

CC_ll2u(double lat, double lon, double *easting, double *northing, int *zone)

This function computes the utm easting and northing from the latitude-longitude
coordinates in lat and lon. If the value for zone is set to anything else than zeor
(verify?!), the point is forced into this zone, otherwise the zone is computed inter-
nally. Returns 1 on success, -1 if the latitude is above 84 degrees, -2 if the longitude
is too far from the center of the utm zone.

21.3.6 changes to gislib

21.3.6.1 Miscellaneous

char *return ellopsoid
name G_ellipsoid_name (int n)

This routine returns a pointer to a string containg the name for the nth ellipsoid in
the GRASS ellipsoid table; NULL when n is below zero or too large. It can be
used as follows:

int n ;
char *name ;
for (n=0 ; name=G_ellipsoid_name(n) ; n++)
fprintf(stdout, "%s 	 n", name);

intget ellipsoid
parameters by

name
G_get_ellipsoid_by_name (char *name, double *a, double *e2)

310

21.3 Coordinate Conversion Library (coorcnv)

This routine returns the semi-major axis a (in meters) and eccentricity squared e2
for the named ellipsoid. Returns 1 if name is a known ellipsoid, 0 otherwise.

int get ellipsoid
parametersG_get_ellipsoid_parameters (double *a, double *e2)

This routine returns the semi-major axis a (in meters) and the eccentricity squared
e2 for the ellipsoid associated with the database. If there is no ellipsoid explicitly
associated with the database, it returns the values for the WGS 84 ellipsoid.

int get spheroid
parameters by
name

G_get_spheroid_by_name(const char *name, double *a, double *e2, double *f)

This function returns the semi-major axis a (in meters), the eccentricity squared e2
and the inverse flattening f for the named ellipsoid. Returns 1 if name is a known
ellipsoid, 0 otherwise.

char * get ellipsoid
nameG_ellipsoid_name(int n)

This function returns a pointer to the short name for the nth ellipsoid. If n is less
than 0 or greater than the number of known ellipsoids, it returns a NULL pointer.

char * get description
for nth ellipsoidG_ellipsoid_description(int n)

This function returns a pointer to the description text for the nth ellipsoid. If n
is less than 0 or greater than the number of known ellipsoids, it returns a NULL
pointer.

char * get datum name
for databaseG_database_datum_name()

Returns a pointer to the name of the map datum of the current database. If there
is no map datum explicitely associated with the acutal database, the standard map
datum WGS84 is returned, on error a NULL pointer is returned.

311

21 Projection and Datum support

int get datum
parameters
from database

G_get_datum_parameters(double *a, double *e2, double *f, double *dx, double *dy, dou-
ble *dz)

This function sets the datum parameters for the map datum of the current database.
These are the semi-major axis a (in meters), the eccentricity squared e2 and the
inverse flattening f of the spheroid associated with the database and the x shift dx,
the y shift dy and the z shift dz of the map datum associated with the database. If
there is no map datum explicitely associated with the actual database, the standard
values for the WGS84 spheroid and map datum are set. The funcion returns 1 on
success, 0 if the default WGS84 parameters are set. If an error occurs, the function
dies with a diagnostic message (HINT: to change, very bad practice to die in a
library function!).

intget datum
parameters

from database
G_get_datum_parameters7(double *a, double *e2, double *f, double *dx, double *dy,
double *dz, double *rx, double *ry, double *rz, double *m)

This is a placeholder as the 7 parameter datum shift support is not implemented
yet.

intask for a valid
datum name G_ask_datum_name(char *datum)

This function asks the user interactively for a valid datum name from the datum
table. The datum name is stored in the character array pointed to by datum. The
function returns 1 on sucess, -1 if no datum was entered on command line and 0 on
internal error.

312

22 Grid3D raster volume library

Authors:

Roman Waupotitsch and Michael Shapiro Helena Mitasova, Bill Brown, Lubos Mitas, Jaro
Hofierka

22.1 Directory Structure

The file format consists of a mapset element grid3 which contains a directory for every map.
The elements for each map are

3d region file
color file (color)
categories file (cats)
range file (range)
timestamp file /* not yet implemented */
cell file (cell)
header file (cellhd)
a directory containing display files (dsp)

There is also a colr2 mechanism provided. colr2 color tables are stored in grid3/colr2/MAPSET/MAP.

Note: color, categories, and the range can be used in the same way as in 2d GRASS with the
exception of reading and writng. 3d read and write functions have to be used for this purpose.

22.2 Data File Format

� Cell-values can be either double or float.

� Values are written in XDR-format.

� NULL-values are stored in an embedded fashion.

� The cell-values are organized in 3d-tiles.

� The tile dimensions can be chosen when a new map is opened.

� Every tile of a map has the same dimension except those which overlap the region bound-
aries.

313

22 Grid3D raster volume library

� Compression is used to store tiles.

The data file has the following format:

xdr_int nofBytesLong;
xdr_int nofBytesUsed;
encoded_long indexOffset;
compressed_tile[] tiles;
compressed_encoded_long[] index;

22.2.1 Transportability of data file

All numbers stored in the data file are either XDR-encoded or encoded by some other method
(for variables of type long only).

22.2.2 Tile Data NULL-values

G3D uses the same functions as 2d GRASS to set and test NULL-values. The storage in the file
is different though. NULL-values are stored with a special bit-pattern if maximum precision is
chosen. They are stored by adding an additional bit if the precision is smaller.

22.2.3 Tile Data Compression

There are three methods of compression provided. The compression methods can either be
those defined by default, set by environment variables or explicitly set at run-time.

Precision
RLE

Precision indicates how many of the mantissa bits should be stored on file. This number can
be any value between 0 and 23 for floats and between 0 and 52 for doubles. Choosing a small
precision is the most effective way to achieve good compression.

RLE takes advantage of possible repetitions of the exponents and the NULL-bit structure. Using
RLE does not significantly increase the running time. If for some tile the non-RLEed version is
smaller in size, RLE is not used for this tile.

The default and suggested setting is to use precision and RLE.

Additional compression is achieved by storing the extra NULL-bit in a separate bit-array. Using
this scheme NULL-values need not actually be represented in the array of cell values. This array
is stored together with the cell-values of the tile.

314

22.2 Data File Format

22.2.4 Tile Cache

Tiles can either be read and written directly or use an intermediate cache instead.

In non-cache mode the application should only use the functions

int
G3d_readTile ()

and

int
G3d_writeTile ()

to read and write tiles. The application can use one tile provided by the map structure as buffer.
See G3d_getTilePtr ().

In cache mode the application can access cell-values directly by their coordinates. The corre-
sponding functions are

int
G3d_getValue ()

and

int
G3d_putValue ()

and their corresponding typed versions.

If the map is new then in addition to the memory-cache a file-cache is provided. This allows
the application to write the cell-values in any arbitrary order. Tiles are written (flushed) to the
data-file either at closing time or if explicitly requested.

If the map is new G3d_getValue () can be used even if the tile which contains the cell has
already been flushed to the data file. In this case the tile is simply read back into the memory-
cache from the data file.

Explicitly flushing tiles can have the advantage that less disk space is occupied since tiles are
stored in a uncompressed fashion in the file-cache. Flushing tiles explicitly can cause problems
with accuracy though if precision is less than the maximum precision and an already flushed

315

22 Grid3D raster volume library

value is used for computations later in the program.

The type of the cell-values of the tiles in memory can be chosen independently of the type of
the tiles in the file. Here, once again one has to consider possible problems arising from mixing
different precisions.

As an example consider the case where the data is stored in the file with double precision and
the tiles are stored in memory in single precision. Then using G3d_getValue () will ac-
tually return a double precision number whose precision is only 23 bits. It is therefore a good
idea to use the types in the memory consistently.

22.2.5 Header File

The header file has the following format:

Proj: 1
Zone: 1
North: 2.0000000000000
South: 0.5000000000000
East: 4.0000000000000
West: 3.0000000000000
Top: 6.0000000000000
Bottom: 5.0000000000000
nofRows: 30
nofCols: 20
nofDepths: 14
e-w resol: 0.05
n-s resol: 0.05
t-b resol: 0.071428571
TileDimensionX: 8
TileDimensionY: 8
TileDimensionZ: 8
CellType: double
useCompression: 1
useRle: 1
Precision: -1
nofHeaderBytes: 12
useXdr: 1
hasIndex: 1
Units: none

Except for the first 14 fields the entries of the header file should not be modified. The precision
value -1 indicates that maximum precision is used.

Binary files not in G3D format can be read by the library. The following actions have to be
taken:

316

22.2 Data File Format

Make a new map directory in the grid3 element of the mapset (say mymap). Copy the file into
mymap/cell and generate a header file mymap/cellhd.

In the following example the relevant values of mymap/cellhd are shown:

TileDimensionX: A
TileDimensionY: B
TileDimensionZ: C
useCompression: 0
useRle: 0
Precision: -1
nofHeaderBytes: X
useXdr: 0
hasIndex: 0

The values of A, B, and C have to be chosen according to one of the following patterns:

A >= 1, B == 1, C == 1, or
A >= nofRows, B >= 1, C == 1, or
A >= nofRows, B >= nofCols, C >= 1.

A larger tile size reduces the number of tile-reads. If in the third pattern C is chosen larger than
or equal to nofDepths, the entire region is considered one large tile.

The value nofHeaderBytes indicates the offset in the file to the first data entry.

For performance reasons it is a good idea to use function G3d_retile() before using the file
in other applications.

22.2.6 Region Structure

typedef struct{

double north, south;
double east, west;
double top, bottom;

int rows, cols, depths;/* data dimensions in cells */

double ns_res, ew_res, tb_res;

int proj; /* Projection (see gis.h) */
int zone; /* Projection zone (see gis.h) */

} G3D_Region;

22.2.7 Windows

Window capability similar to that of 2d GRASS is provided (compare 9.1 Region (p. 61)). Ad-
ditional features are the window for the third dimension as well as the possibility to choose a

317

22 Grid3D raster volume library

different window for every map. The window can be specified at the time of opening an old
map. It can be modified at any time later in the program. The resampling method can be the
default nearest neighbor method as well as an application provided method.

The default 3d window file is WIND3 located in the mapset. Application programs should use
G3d_useWindowParams () to allow the user to overwrite this default.

The window file has the following format:

Proj: 1
Zone: 1
North: 2.0
South: 0.5
East: 4.0
West: 3.0
Top: 5.0
Bottom: 6.0
nofRows: 30
nofCols: 20
nofDepths: 14
e-w resol: 0.05000000000000000
n-s resol: 0.05000000000000000
t-b resol: 0.07142857142857142

Note: after reading the window file the fields e-w, n-s, and t-b are recomputed internally.

A note about windows and caching. Caching is performed on the level of tiles read from the
file. There is no caching performed on resampled data. This is different from 2d GRASS since
resampling for a specific value is performed every time it is being accessed.

22.2.8 Masks

G3D provides a mask for the 3d region. The mask structure is automatically initialized at the
time the first file is opened. The same structure is used for all the files. The default for every
file is that the mask is turned off. If masking should be performed, the application program
has to turn on masking explicitly. If masking is turned on for a file, the cell-values of a tile are
automatically checked against the mask. Values which are masked out, are set to NULL.

Note: changing the status of masking after one or more tiles have already been read does not
affect the tiles which are already stored in the cache.

Any arbitrary g3d file can be used as mask file: NULL-values are interpreted as "mask-out",
all other values are interpreted as "don’t mask out". Using r3.mask to convert a g3d file
into a mask file instead of simply copying (or renaming) the directory will significantly reduce
to amount of disk space and the access time for the mask.

318

22.3 G3D Defaults

22.2.9 Include File

Exported G3D constants and structures can be found in G3d.h.

22.3 G3D Defaults

There are three methods to set default variables. First, the default can be set at compile time in
g3ddefault.c. This value has lowest priority.

Second, the default can be set via an environment variable. Third, the value can be set explicitly
set at run time. This value has highest priority.

There are also functions provided to query the value.

22.3.1 Cache Mode

22.3.1.1 Limiting the maximum cache size

The limit is specified in bytes. It is a limit on the size of cell-data stored in the cache and does
not include the support structure.

Default G3D_CACHE_SIZE_MAX_DEFAULT. This is currently set to 2meg and can be changed
at compilation time of the library.

Environment variable G3D_MAX_CACHE_SIZE.

void Set cache limit
G3d_setCacheLimit (int nBytes)

int Get cache limit
G3d_getCacheLimit (int nBytes)

22.3.1.2 Setting the cache size

This value specifies the number of tiles stored in the cache. It is the value used if at opening time
of a map G3D_USE_CACHE_DEFAULT is used for the cache mode. Any other value used at
opening time will supersede the default value. A default value of 0 indicates that non-cache
mode should be used by default.

Default G3D_CACHE_SIZE_DEFAULT. This is currently set to 1000 and can be changed at
compilation time of the library.

319

22 Grid3D raster volume library

Environment variable G3D_DEFAULT_CACHE_SIZE.

void
G3d_setCacheSize (int nTiles)

int
G3d_getCacheSize ()

22.3.2 Compression

22.3.2.1 Toggling compression mode

This value specifies whether compression should be used while writing a new map. It does not
have any effect on old maps.

Default G3D_COMPRESSION_DEFAULT. This is set to G3D_COMPRESSION. This default
should not be changed.

Environment variables G3D_USE_COMPRESSION and G3D_NO_COMPRESSION.

See functions G3d_setCompressionMode () (cf. Section 22.3.2.3) and G3d_getCompressionMode
() (cf. Section 22.3.2.3).

22.3.2.2 Toggling RLE compression

This value specifies whether RLE compression should be used (in addition to precision).

Default G3D_USE_RLE_DEFAULT. This is currently set to G3D_USE_RLE and can be changed
at compilation time of the library.

Environment variables G3D_USE_RLE and G3D_NO_RLE.

See functions G3d_setCompressionMode () (cf. Section 22.3.2.3) and G3d_getCompressionMode
() (cf. Section 22.3.2.3).

22.3.2.3 Setting the precision

This number specifies how many mantissa bits should be used when writing a cell value.
The minimum value is 0. The maximum value is 23 or G3D_MAX_PRECISION for type
G3D_FLOAT, it is 52 or G3D_MAX_PRECISION for type G3D_DOUBLE.

Default G3D_PRECISION_DEFAULT. This is set to G3D_MAX_PRECISION. This default
should not be changed.

320

22.3 G3D Defaults

Environment variables G3D_PRECISION and G3D_MAX_PRECISION.

void
G3d_setCompressionMode (int doCompress, int doLzw, int doRle, int precision)

doCompress should be one of G3D_NO_COMPRESSION and
G3D_COMPRESSION, doRle should be either G3D_NO_RLE or
G3D_USE_RLE, and precision should be either G3D_MAX_PRECISION
or a positive integer.

void
G3d_getCompressionMode (int *doCompress, int *doLzw, int *doRle, int *precision)

22.3.3 Tiles

22.3.3.1 Setting the tile dimensions

The dimensions are specified in number of cell.

Defaults G3D_TILE_X_DEFAULT, G3D_TILE_Y_DEFAULT, and G3D_TILE_Z_DEFAULT.
These are currently set to 8 and can be changed at compilation time of the library.

Environment variables G3D_TILE_DIMENSION_X, G3D_TILE_DIMENSION_Y, and G3D_TILE_DIMENSION_Z.

void
G3d_setTileDimension (int tileX, int tileY, int tileZ)

void
G3d_getTileDimension (int *tileX, int *tileY, int *tileZ)

22.3.3.2 Setting the tile cell-value type

Specifies which type is used to write cell-values on file. This type can be chosen independently
of the type used to store cell-values in memory.

Default G3D_FILE_TYPE_DEFAULT. This is set to G3D_DOUBLE. This default should not
be changed.

Environment variables G3D_WRITE_FLOAT and G3D_WRITE_DOUBLE.

321

22 Grid3D raster volume library

void
G3d_setFileType (int type)

int
G3d_getFileType (int type)

22.3.4 Setting the window

The window is set from a 3d window file.

The default 3d window file is WIND3 located in the current mapset.

Possible choices for 3d window files are name which refers to a window file in the 3d window
database located at windows3d of the current mapset; or file names which are identified by a
leading "/" or "."; or fully qualified names, i.e. file@mapset which refer to window files
in the 3d window database of mapset. Note, that names WIND3 and WIND3@mapset do not
specify the default window name in the (current) mapset but rather a window file in the window
database of the (current) mapset.

Environment variable G3D_DEFAULT_WINDOW3D.

See functions

G3d_useWindowParams (),

G3d_setWindow (), and

G3d_setWindowMap ().

22.3.5 Setting the Units

Default "none".

No environment variable.

void
G3d_setUnit (unit) char *unit;

22.3.6 Error Handling: Setting the error function

This variable specifies the function which is invoked when an error (not a fatal error) occurs.
For example setting the error function to G3d_fatalError simplifies debugging with dbx

322

22.4 G3D Function Index

and also might show errors which are missed because the application does not check the return
value.

Default G3d_skipError.

Environment variables G3D_USE_FATAL_ERROR and G3D_USE_PRINT_ERROR.

void
G3d_setErrorFun (void (*fun)(char *))

The following 3 functions are possible choices for error functions.

void
G3d_skipError (char (*msg)(char *))

This function ignores the error.

void
G3d_printError (char (*msg)(char *))

This function prints the error message msg to stderr and returns.

void
G3d_fatalError (char (*msg)(char *))

This function prints the error message msg to stderr, flushes stdout and stderr, and
terminates the program with a segementation fault.

22.4 G3D Function Index

22.4.1 Opening and Closing G3D Files

void *
G3d_openCellOld (char *name, char *mapset, G3D_Region *window, int type, int cache)

Opens existing g3d-file name in mapset.
Tiles are stored in memory with type which must be any of
G3D_FLOAT, G3D_DOUBLE, or G3D_TILE_SAME_AS_FILE. cache

323

22 Grid3D raster volume library

specifies the cache-mode used and must be either G3D_NO_CACHE,
G3D_USE_CACHE_DEFAULT, G3D_USE_CACHE_X, G3D_USE_CACHE_Y,
G3D_USE_CACHE_Z, G3D_USE_CACHE_XY, G3D_USE_CACHE_XZ,
G3D_USE_CACHE_YZ, G3D_USE_CACHE_XYZ, the result of
G3d_cacheSizeEncode () (cf. Section 22.4.6), or any positive integer
which specifies the number of tiles buffered in the cache. window sets the
window-region for the map. It is either a pointer to a window structure or
G3D_DEFAULT_WINDOW, which uses the window stored at initialization time
or set via G3d_setWindow () (cf. Section 22.4.16). To modify the window
for the map after it has already been opened use G3d_setWindowMap () (cf.
Section 22.4.16).
Returns a pointer to the cell structure ... if successful, NULL ... otherwise.

void *
G3d_openCellNew (char *name, int type, int cache, G3D_Region *region)

Opens new g3d-file with name in the current mapset. Tiles are stored in
memory with type which must be one of G3D_FLOAT, G3D_DOUBLE,
or G3D_TILE_SAME_AS_FILE. cache specifies the cache-mode used
and must be either G3D_NO_CACHE, G3D_USE_CACHE_DEFAULT,
G3D_USE_CACHE_X, G3D_USE_CACHE_Y, G3D_USE_CACHE_Z,
G3D_USE_CACHE_XY, G3D_USE_CACHE_XZ, G3D_USE_CACHE_YZ,
G3D_USE_CACHE_XYZ, the result of G3d_cacheSizeEncode () (cf.
Section 22.4.6), or any positive integer which specifies the number of tiles buffered
in the cache. region specifies the 3d region.
Returns a pointer to the cell structure ... if successful, NULL ... otherwise.

void *
G3d_openCellNewParam (char *name, int typeIntern, int cache, G3D_Region *region,
int type, int doLzw, int doRle, int precision, int tileX, int tileY, int tileZ)

Opens new g3d-file with name in the current mapset. Tiles are stored in mem-
ory with typeIntern which must be one of G3D_FLOAT, G3D_DOUBLE,
or G3D_TILE_SAME_AS_FILE. cache specifies the cache-mode used
and must be either G3D_NO_CACHE, G3D_USE_CACHE_DEFAULT,
G3D_USE_CACHE_X, G3D_USE_CACHE_Y, G3D_USE_CACHE_Z,
G3D_USE_CACHE_XY, G3D_USE_CACHE_XZ, G3D_USE_CACHE_YZ,
G3D_USE_CACHE_XYZ, the result of G3d_cacheSizeEncode () (cf.
Section 22.4.6), or any positive integer which specifies the number of tiles buffered
in the cache. region specifies the 3d region.
In addition the properties of the new file have to be specified. It is assumed by
default that compression is used. This function first sets the global default values
to the specified values, and then restores the original global defaults. This function

324

22.4 G3D Function Index

can be used in conjunction with G3d_setStandard3dInputParams () (cf.
Section 22.4.18) and G3d_getStandard3dParams ().
Returns a pointer to the cell structure ... if successful, NULL ... otherwise.

int
G3d_closeCell (void *map)

Closes g3d-file. If map is new and cache-mode is used for map then every tile
which is not flushed before closing is flushed.
Returns 1 ... if successful, 0 ... otherwise.

22.4.2 Reading and Writing Tiles

These functions read or write data directly to the file (after performing the appropriate com-
pression) without going through the cache. In order to avoid unexpected side-effects the use of
these functions in cache mode is discouraged.

int
G3d_readTile (void *map, char *tileIndex, int tile, int type)

Reads tile with index tileIndex into the tile buffer. The cells are stored with type
type which must be one of G3D_FLOAT and G3D_DOUBLE. If the tile with tileIn-
dex is not stored on the file corresponding to map, and tileIndex is a valid index tile
is filled with NULL-values.
Returns 1 ... if successful, 0 ... otherwise.

int
G3d_readTileFloat (void *map, char *tileIndex, int tile)

Is equivalent to G3d_readTile (map, tileIndex, tile, G3D_FLOAT).

int
G3d_readTileDouble (void *map, char *tileIndex, int tile)

Is equivalent to G3d_readTile (map, tileIndex, tile, G3D_DOUBLE).

int
G3d_writeTile (void *map, char *tileIndex, int tile, int type)

325

22 Grid3D raster volume library

Writes tile with index tileIndex to the file corresponding to map. It is assumed that
the cells in tile are of type which must be one of G3D_FLOAT and G3D_DOUBLE.
The actual type used to write the tile depends on the type specified at the time when
map is initialized.
A tile can only be written once. Subsequent attempts to write the same tile are
ignored.
Returns 1 ... if successful, 2 ... if write request was ignored, 0 ... otherwise.

int
G3d_writeTileFloat (void *map, char *tileIndex, int tile)

Is equivalent to G3d_writeTile (map, tileIndex, tile,
G3D_FLOAT).

int
G3d_writeTileDouble (void *map, char *tileIndex, int tile)

Is equivalent to G3d_writeTile (map, tileIndex, tile,
G3D_DOUBLE).

22.4.3 Reading and Writing Cells

void
G3d_getValue (void *map, int x, int y, int z, char *value, int type)

Returns in *value the cell-value of the cell with window-coordinate (x, y, z). The
value returned is of type.
This function invokes a fatal error if an error occurs.

float
G3d_getFloat (void *map, int x, int y, int z)

Is equivalent to G3d_getValue (map, x, y, z, &value,
G3D_FLOAT); return value.

double
G3d_getDouble (void *map, int x, int y, int z)

326

22.4 G3D Function Index

Is equivalent to G3d_getValue (map, x, y, z, &value,
G3D_DOUBLE); return value.

void
G3d_getValueRegion (void *map, int x, int y, int z, char*value, int type)

Returns in *value the cell-value of the cell with region-coordinate (x, y, z). The
value returned is of type. Here region means the coordinate in the cube of data in
the file, i.e. ignoring geographic coordinates.
This function invokes a fatal error if an error occurs.

float
G3d_getFloatRegion (void *map, int x, int y, int z)

Is equivalent to G3d_getValueRegion (map, x, y, z, &value,
G3D_FLOAT); return value.

double
G3d_getDoubleRegion (void *map, int x, int y, int z)

Is equivalent to G3d_getValueRegion (map, x, y, z, &value,
G3D_DOUBLE); return value.

int
G3d_putValue (void *map, int x, int y, int z, char *value, int type)

After converting *value of type into the type specified at the initialization time
(i.e. typeIntern) this function writes the value into the tile buffer corresponding to
cell-coordinate (x, y, z).
Returns
1 ... if successful, 0 ... otherwise.

int
G3d_putFloat (void *map, int x, int y, int z, char *value)

Is equivalent to G3d_putValue (map, x, y, z, &value, G3D_FLOAT).

327

22 Grid3D raster volume library

int
G3d_putDouble (void *map, int x, int y, int z, char *value)

Is equivalent to G3d_putValue (map, x, y, z, &value, G3D_DOUBLE).

22.4.4 Loading and Removing Tiles

char *
G3d_getTilePtr (void *map, int tileIndex)

This function returns a pointer to a tile which contains the data for the
tile with index tileIndex. The type of the data stored in the tile depends on
the type specified at the initialization time of map. The functionality is different
depending on whether map is old or new and depending on the cache-mode of map.

If map is old and the cache is not used the tile with tileIndex is read from file and
stored in the buffer provided by the map structure. The pointer to this buffer is
returned. If the buffer already contains the tile with tileIndex reading is skipped.
Data which was stored in earlier calls to G3d_getTilePtr is destroyed. If the
tile with tileIndex is not stored on the file corresponding to map, and tileIndex is a
valid index the buffer is filled with NULL-values.

If map is old and the cache is used the tile with tileIndex is read from file and
stored in one of the cache buffers. The pointer to buffer is returned. If no free
cache buffer is available an unlocked cache-buffer is freed up and the new tile is
stored in its place. If the tile with tileIndex is not stored on the file corresponding
to map, and tileIndex is a valid index the buffer is filled with NULL-values. If one
of the cache buffers already contains the tile with tileIndex reading is skipped and
the pointer to this buffer is returned.

If map is new and the cache is not used the functionality is the same as if map is old
and the cache is not used. If the tile with tileIndex is already stored on file, it is read
into the buffer, if not, the cells are set to null-values. If the buffer corresponding
to the pointer is used for writing, subsequent calls to G3d_getTilePtr may
destroy the values already stored in the buffer. Use G3d_flushTile to write
the buffer to the file before reusing it for a different index. The use of this buffer
as write buffer is discouraged.

If map is new and the cache is used the functionality is the same as if map is old
and the cache is used with the following exception. If tileIndex is a valid index
and the tile with this index is not found in the cache and is not stored on the file
corresponding to map, then the file cache is queried next. If the file-cache contains
the tile it is loaded into the cache (memory-cache). Only if the file-cache does not
contain the tile it is filled with NULL-values. Tile contents of buffers are never

328

22.4 G3D Function Index

destroyed. If a cache buffer needs to be freed up, and the tile stored in the buffer
has not been written to the file corresponding to map yet, the tile is copied into the
file-cache.

Care has to be taken if this function is used in non-cache mode since it is implic-
itly invoked every time a read or write request is issued. The only I/O-functions
for which it is safe to assume that they do not invoke G3d_getTilePtr are
G3d_readTile () and G3d_writeTile () and their corresponding type-
specific versions.
Returns a pointer to a buffer ... if successful, NULL ... otherwise.

int
G3d_tileLoad (void *map, int tileIndex)

Same functionality as G3d_getTilePtr () but does not return the pointer.
Returns 1 ... if successful, 0 ... otherwise.

int
G3d_removeTile (void *map, inttileIndex)

Removes a tile from memory-cache if tile is in memory-cache. For new maps
the application does not know whether the tile is in the memory-cache or in
the file-cache. Therefore, for new maps this function should be preceded by
G3d_tileLoad ().
(Question: Is this a useful function?)
Returns 1 ... if successful, 0 ... otherwise.

22.4.5 Write Functions used in Cache Mode

int
G3d_flushTile (void *map, int tileIndex)

Writes the tile with tileIndex to the file corresponding to map and removes the
tile from the cache (in non-cache mode the buffer provided by the map-structure is
written).
If this tile has already been written before the write request is ignored. If the tile was
never referred to before the invokation of G3d_flushTile, a tile filled with NULL-
values is written.
Returns 1 ... if successful, 0 ... otherwise.

329

22 Grid3D raster volume library

int
G3d_flushTileCube (void *map, int xMin, int yMin, int zMin, int xMax, int yMax, int
zMax)

Writes the tiles with tile-coordinates contained in the axis-parallel cube with ver-
tices (xMin, yMin, zMin) and (xMax, yMax, zMax). Tiles which are not stored in
the cache are written as NULL-tiles. Write attempts for tiles which have already
been written earlier are ignored.
Returns 1 ... if successful, 0 ... otherwise.

int
G3d_flushTilesInCube (void *map, int xMin, int yMin, int zMin, int xMax, int yMax, int
zMax)

Writes those tiles for which every cell has coordinate contained in the axis-parallel
cube defined by the vertices with cell-coordinates (xMin, yMin, zMin) and (xMax,
yMax, zMax).
Tiles which are not stored in the cache are written as NULL-tiles. Write attempts
for tiles which have already been written earlier are ignored.
Returns 1 ... if successful, 0 ... otherwise.

22.4.6 Locking and Unlocking Tiles, and Cycles

int
G3d_lockTile (void *map, int tileIndex)

Locks tile with tileIndex in cache. If after locking fewer than the minimum number
of unlocked tiles are unlocked, the lock request is ignored.
Returns 1 ... if successful, -1 ... if request is ignored, 0 ... otherwise.

int
G3d_unlockTile (void *map, int tileIndex)

Unlocks tile with tileIndex.
Returns 1 ... if successful, 0 ... otherwise.

int
G3d_unlockAll (void *map)

330

22.4 G3D Function Index

Unlocks every tile in cache of map.
Returns 1 ... if successful, 0 ... otherwise.

void
G3d_autolockOn (void *map)

Turns autolock mode on.

void
G3d_autolockOff (void *map)

Turns autolock mode Off.

void
G3d_minUnlocked (void *map, int minUnlocked)

Sets the minimum number of unlocked tiles to minUnlocked. This function should
be used in combination with G3d_unlockAll () in order to avoid situations
where the new minimum is larger than the actual number of unlocked tiles.
minUnlocked must be one of G3D_USE_CACHE_X, G3D_USE_CACHE_Y,
G3D_USE_CACHE_Z, G3D_USE_CACHE_XY, G3D_USE_CACHE_XZ,
G3D_USE_CACHE_YZ, G3D_USE_CACHE_XYZ, the result of
G3d_cacheSizeEncode () (cf. Section 22.4.6), or any positive integer which
explicitly specifies the number of tiles.

int
G3d_beginCycle (void *map)

Starts a new cycle.
Returns 1 ... if successful, 0 ... otherwise.

int
G3d_endCycle (void *map)

Ends a cycle.
Returns 1 ... if successful, 0 ... otherwise.

331

22 Grid3D raster volume library

int
G3d_cacheSizeEncode (int cacheCode, int n)

Returns a number which encodes multiplicity n of cacheCode. This value can be
used to specify the size of the cache.
If cacheCode is the size (in tiles) of the cache the function returns cacheCode * n.
If cacheCode is G3D_USE_CACHE_DEFAULT the function returns
G3D_USE_CACHE_DEFAULT.
If cacheCode is G3D_USE_CACHE_??? the function returns a value en-
coding G3D_USE_CACHE_??? and n. Here G3D_USE_CACHE_??? is
one of G3D_USE_CACHE_X, G3D_USE_CACHE_Y, G3D_USE_CACHE_Z,
G3D_USE_CACHE_XY, G3D_USE_CACHE_XZ, G3D_USE_CACHE_YZ, or
G3D_USE_CACHE_XYZ, where e.g. G3D_USE_CACHE_X specifies that the
cache should store as many tiles as there exist in one row along the x-axis of the tile
cube, and G3D_USE_CACHE_XY specifies that the cache should store as many
tiles as there exist in one slice of the tile cube with constant Z coordinate.

22.4.7 Reading Volumes

int
G3d_getVolume (void *map, double originNorth, double originWest, double originBot-
tom, double vxNorth, double vxWest, double vxBottom, double vyNorth, double vyWest,
double vyBottom, double vzNorth, double vzWest, double vzBottom, int nx, int ny, int nz,
char *volumeBuf, int type)

Resamples the cube defined by origin and the 3 vertices vx, vy, and vz which
are incident to the 3 edges adjacent to origin. The resampled cube is stored in
volumeBuf which is a cube with dimensions (nx, ny, nz).
The method of sampling is nearest neighbor sampling.
The values stored are of type.
Returns 1 ... if successful, 0 ... otherwise.

int
G3d_getAllignedVolume (void *map, double originNorth, double originWest, double orig-
inBottom, double lengthNorth, double lengthWest, double lengthBottom, int nx, int ny, int
nz, char *volumeBuf, int type)

Resamples the axis-parallel cube defined by origin and the lengths of the 3 edges
adjacent to origin. The resampled cube is stored in volumeBuf which is a cube with
dimensions (nx, ny, nz). The method of sampling is nearest neighbor sampling.
The values stored are of type.
Returns 1 ... if successful, 0 ... otherwise.

332

22.4 G3D Function Index

22.4.8 Allocating and Freeing Memory

void *
G3d_malloc (int nBytes)

Same as malloc (nBytes), except that in case of error G3d_error () is invoked.
Returns a pointer ... if successful, NULL ... otherwise.

void *
G3d_realloc (void *ptr, int nBytes)

Same as realloc (ptr, nBytes), except that in case of error G3d_error () is
invoked.
Returns a pointer ... if successful, NULL ... otherwise.

void
G3d_free (void *ptr)

Same as free (ptr).

char *
G3d_allocTilesType (void *map, int nofTiles, int type)

Allocates a vector of nofTiles tiles with the same dimensions as the tiles of map
and large enough to store cell-values of type.
Returns a pointer to the vector ... if successful, NULL ... otherwise.

char *
G3d_allocTiles (void *map, int nofTiles)

Is equivalent to G3d_allocTilesType (map, nofTiles, G3d_fileTypeMap (map)).

void
G3d_freeTiles (char *tiles)

Is equivalent to G3d_free (tiles);

333

22 Grid3D raster volume library

22.4.9 G3D Null Value Support

void
G3d_isNullValueNum (void *n, int type)

Returns 1 if the value of *n is a NULL-value. Returns 0 otherwise.

void
G3d_setNullValue (void *c, int nofElts, int type)

Fills the vector pointed to by c with nofElts NULL-values of type.

void
G3d_setNullTileType (void *map, int tile, int type)

Assumes that tile is a tile with the same dimensions as the tiles of map. Fills tile
with NULL-values of type.

void
G3d_setNullTile (void *map, int tile)

Is equivalent to G3d_setNullTileType (map, tile, G3d_fileTypeMap (map)).

22.4.10 G3D Map Header Information

void
G3d_getCoordsMap (void *map, int *rows, int *cols, int *depths)

Returns the size of the region of map in cells.

void
G3d_getRegionMap (void *map, int *north, int *south, int *east, int *west, int *top, int
*bottom)

Returns the size of the region.

334

22.4 G3D Function Index

void
G3d_getRegionStructMap (void *map, G3D_Region *region)

Returns in region the region of map.

void
G3d_getTileDimensionsMap (void *map, int *x, int *y, int *z)

Returns the tile dimensions used for map.

void
G3d_getNofTilesMap (void *map, int *nx, int *ny, int *nz)

Returns the dimensions of the tile-cube used to tile the region of map. These
numbers include partial tiles.

int
G3d_tileTypeMap (void *map)

Returns the type in which tiles of map are stored in memory.

int
G3d_fileTypeMap (void *map)

Returns the type with which tiles of map are stored on file.

int
G3d_tilePrecisionMap (void *map)

Returns the precision used to store map.

int
G3d_tileUseCacheMap (void *map)

Returns 1 if map uses cache, returns 0 otherwise.

335

22 Grid3D raster volume library

void
G3d_printHeader (void *map)

Prints the header information of map.

22.4.11 G3D Tile Math

void
G3d_tileIndex2tile (void *map, int tileIndex, int *xTile, int *yTile, int *zTile)

Converts index tileIndex into tile-coordinates (xTile, yTile, zTile).

int
G3d_tile2tileIndex (void *map, int xTile, int yTile, int zTile)

Returns tile-index corresponding to tile-coordinates (xTile, yTile, zTile).

void
G3d_coord2tileCoord (void *map, int x, int y, int z, int *xTile, int *yTile, int *zTile, int
*xOffs, int *yOffs, int *zOffs)

Converts cell-coordinates (x, y, z) into tile-coordinates (xTile, yTile, zTile) and the
coordinate of the cell (xOffs, yOffs, zOffs) within the tile.

void
G3d_tileCoordOrigin (void *map, int xTile, int yTile, int zTile, int *x, int *y, int *z)

Computes the cell-coordinates (x, y, z) which correspond to the origin of the tile
with tile-coordinates (xTile, yTile, zTile).

void
G3d_tileIndexOrigin (void *map, int tileIndex, int *x, int *y, int *z)

Computes the cell-coordinates (x, y, z) which correspond to the origin of the tile
with tileIndex.

336

22.4 G3D Function Index

void
G3d_coord2tileIndex (void *map, int x, int y, int z, int *tileIndex, int *offset)

Converts cell-coordinates (x, y, z) into tileIndex and the offset of the cell within the
tile.

int
G3d_coordInRange (void *map, int x, int y, int z)

Returns 1 if cell-coordinate (x, y, z) is a coordinate inside the region. Returns 0
otherwise.

int
G3d_tileInRange (void *map, int x, int y, int z)

Returns 1 if tile-coordinate (x, y, z) is a coordinate inside tile cube. Returns 0
otherwise.

int
G3d_tileIndexInRange (void *map, int tileIndex)

Returns 1 if tileIndex is a valid index for map. Returns 0 otherwise.

int
G3d_isValidLocation (void *map, double north, double west, double bottom)

Returns 1 if region-coordinates (north, west, bottom) are inside the region of map.
Returns 0 otherwise.

void
G3d_location2coord (void *map, double north, double west, double bottom, int *x, *y, *z)

Converts region-coordinates (north, west, bottom) into cell-coordinates (x, y, z).

int
G3d_computeClippedTileDimensions (void *map, int tileIndex, int *rows, int *cols, int
*depths, int *xRedundant, int *yRedundant, int *zRedundant)

337

22 Grid3D raster volume library

Computes the dimensions of the tile when clipped to fit the region of map. The
clipped dimensions are returned in rows, cols, depths. The complement is returned
in xRedundant, yRedundant, and zRedundant. This function returns the number of
cells in the clipped tile.

22.4.12 G3D Range Support

The map structure of G3D provides storage for the range. The range of a map is updated every
time a cell is written to the file. When an old map is opened the range is not automatically
loaded. The application has to invoke G3d_range_load () (cf. Section 22.4.12) explic-
itly. In addition to these function the application can also use the standard grass functions to
manipulate the range.

int
G3d_range_load (void *map)

Loads the range into the range structure of map.
Returns 1 ... if successful 0 ... otherwise.

void
G3d_range_min_max (void *map, double *min, double *max)

Returns in min and max the minimum and maximum values of the range.

int
G3d_range_write (void *map)

Writes the range which is stored in the range structure of map. (This function is
invoked automatically when a new file is closed).
Returns 1 ... if successful 0 ... otherwise.

22.4.13 G3D Color Support

Applications can use the standard grass functions to work with colors, except for the file ma-
nipulations.

int
G3d_removeColor (char *name)

338

22.4 G3D Function Index

Removes the primary and/or secondary color file. See G_remove_colr for details.
Returns always 0.

int
G3d_readColors (char *name, char *mapset, struct Colors *colors)

Reads color file for map name in mapset into the colors structure. See
G_read_colors (12.10.3 Raster Color Table (p. 116)) for details and return val-
ues.

int
G3d_writeColors (char *name, char *mapset, struct Colors *colors)

Writes colors stored in colors structure into the color file for map name in mapset.
See G_write_colors (12.10.3 Raster Color Table (p. 116)) for details and return
values.

22.4.14 G3D Categories Support

Applications can use the standard grass functions to work with categories, except for the file
manipulations.

int
G3d_readCats (char *name, char *mapset, struct Categories *pcats

Reads the categories file for map name in mapset and stores the categories in the
pcats structure. See G_read_cats (12.10.2 Raster Category File (p. 114)) for details
and return values.

int
G3d_writeCats (char *name, struct Categories *cats)

Writes the categories stored in the cats structure into the categories file for map
name in the current mapset. See G_write_cats (12.10.2 Raster Category File (p.
114)) for details and return values.

339

22 Grid3D raster volume library

22.4.15 G3D Mask Support

void
G3d_maskOn (void *map)

Turns on the mask for map. Do not invoke this function after the first tile has been
read since the result might be inconsistent cell-values.

void
G3d_maskOff (void *map)

Turns off the mask for map. This is the default. Do not invoke this function after
the first tile has been read since the result might be inconsistent cell-values.

int
G3d_maskIsOn (void *map)

Returns 1 if the mask for map is turned on. Returns 0 otherwise.

int
G3d_maskIsOff (void *map)

Returns 1 if the mask for map is turned off. Returns 0 otherwise.

The remaining functions in this section are for the explicit query of the mask and the masking
of individual cells or tiles. These functions are used in the library and might have applications
in situations where both the masked and non-masked value of a cell has to be known.

int
G3d_maskReopen (int cache)

This function should be used to adjust the cache size used for the 3d-mask. First
the open 3d-mask is closed and then opened again with a cache size as specified
with cache.
Returns 1 ... if successful 0 ... otherwise.

int
G3d_maskFileExists ()

340

22.4 G3D Function Index

Returns 1 if the 3d mask file exists.

int
G3d_maskMapExists ()

Returns 1 if the 3d mask is loaded.

char *
G3d_maskFile ()

Returns the name of the 3d mask file.

int
G3d_isMasked (int x, int y, int z)

Returns 1 if the cell with cell-coordinates (x, y, z) is masked out. Returns 0 other-
wise.

void
G3d_maskNum (int x, int y, int z, void *value, int type)

Replaces the value stored in value with the NULL-value if G3d_isMasked (x, y, z)
returns 1. Does nothing otherwise. value is assumed to be oftype.

void
G3d_maskFloat (int x, int y, int z, float *value)

Same as G3d_maskNum (x, y, z, value, G3D_FLOAT).

void
G3d_maskDouble (int x, int y, int z, double *value)

Same as G3d_maskNum (x, y, z, value, G3D_DOUBLE).

void
G3d_maskTile (void *map, int tileIndex, char *tile, int type)

341

22 Grid3D raster volume library

Replaces the values stored in tile (with tileIndex) for which G3d_isMasked returns
1 with NULL-values. Does not change the remaining values. The values are as-
sumed to be of type. Whether replacement is performed or not only depends on
location of the cells of the tile and not on the status of the mask for map (i.e. turned
on or off).

22.4.16 G3D Window Support

void
G3d_setWindowMap (void *map, G3D_Region *window)

Sets the window for map to window. Can be used multiple times for the same map.

void
G3d_setWindow (G3D_Region *window)

Sets the default window used for every map opened later in the program. Can be
used multiple times in the same program.

void
G3d_getWindow (G3D_Region *window)

Stores the current default window in window.

void *
G3d_windowPtr ()

Returns a pointer to the current default window. This pointer should not be
(ab)used to modify the current window structure directly. It is provided to pass
a window pointer when opening a map.

int
G3d_readWindow (G3D_Region *window, char *windowName)

Reads window from the file specified by windowName. The name is converted by
the rules defined in window defaults. A NULL pointer indicates the WIND3 file in
the current mapset.
Returns 1 ... if successful 0 ... otherwise.

342

22.4 G3D Function Index

int
G3d_writeWindow (G3D_Region *window, char *windowName)

Writes window to the file specified by windowName. The name is converted by
the rules defined in window defaults. A NULL pointer indicates the WIND3 file in
the current mapset.
Returns 1 ... if successful 0 ... otherwise.

void
G3d_useWindowParams ()

Allows the window to be set at run-time via the region3 command line argument.
This function has to be called before G_parser (). See also window defaults.

void
G3d_setResamplingFun (void *map, void (*resampleFun)())

Sets the resampling function to be used by G3d_getValue () (cf. Section 22.4.3).
This function is defined as follows:

void
G3d_customResampleFun (void *map, int row, int col, int depth, char *value, int type)

row, col, and depth are in region coordinates. The result is returned in value
as type which is one of G3D_FLOAT or G3D_DOUBLE. Possible choices include
G3d_nearestNeighbor () (cf. Section 22.4.16) and G3d_getValueRegion () (cf. Sec-
tion 22.4.3).

void
G3d_nearestNeighbor (void *map, int row, int col, int depth, char *value, int type)

The default resampling function which uses nearest neighbor resampling.

void
G3d_getResamplingFun (void *map, void (**resampleFun) ())

Returns in resampleFun a pointer to the resampling function used by map.

343

22 Grid3D raster volume library

void
G3d_getNearestNeighborFunPtr (void (**nnFunPtr) ())

Returns in nnFunPtr a pointer to G3d_nearestNeighbor () (cf. Section 22.4.16).

22.4.17 G3D Region

void
G3d_extract2dRegion (G3D_Region *region3d, struct Cell_head *region2d)

Returns in region2d the 2d portion of region3d.

void
G3d_incorporate2dRegion (struct Cell_head *region2d, G3D_Region *region3d)

Replaces the 2d portion of region3d with the values stored in region2d.

void
G3d_adjustRegion (G3D_Region *region)

Computes an adjusts the resolutions in the region structure from the region bound-
aries and number of cells per dimension.

void
G3d_adjustRegionRes (G3D_Region *region)

Computes an adjusts the number of cells per dimension in the region structure
from the region boundaries and resolutions.

void
G3d_regionCopy (G3D_Region *regionDest, G3D_Region *regionSrc)

Copies the values of regionSrc into regionDst. (The unfortunate order of parame-
ters was chosen in order to conform to the order used in G_copy ()).

344

22.4 G3D Function Index

void
G3d_getRegionValue (void *map, double north, double east, double top, char *value, int
type)

Returns in value the value of the map which corresponds to region coordinates
(north, east, top). The value is resampled using the resampling function specified
for map. The value is of type.

void
G3d_readRegionMap (char *name, char *mapset, G3D_Region *region)

Returns in region the region information for 3d cell name@mapset.

22.4.18 Miscellaneous Functions

void
G3d_g3dType2cellType (int g3dType)

Returns the GRASS floating point type which is equivalent to the G3D type of
g3dType.

void
G3d_initDefaults ()

Initializes the default values described in G3D Defaults. Applications have to use
this function only if they need to query the default values before the first file (either
old or new) has been opened.

void
G3d_setStandard3dInputParams ()

Initializes a parameter structure for the subset of command line arguments which
lets the user overwrite the default properties of the new file. Applications are en-
couraged to use this function in order to provide a uniform style. The command
line arguments provided are the type of the cell values, the precision, the properties
of the compression, and the dimension of the tiles (tiledimension). Every of these
values defaults to the value described in G3D Defaults.
This function has to be used in conjunction with G3d_getStandard3dInputParams
() (cf. Section 22.4.18).

345

22 Grid3D raster volume library

int
G3d_getStandard3dInputParams (int *useTypeDefault, *type, *useLzwDefault, *doLzw,
int *useRleDefault, *doRle, *usePrecisionDefault, *precision, int *useDimensionDefault,
*tileX, *tileY, *tileZ

Returns the properties of the new file as chosen by the user via command line argu-
ments. If the default is chosen the values of useXxxxDefault is 1, it is 0 otherwise.
In addition, the corresponding parameters contain the default value if useXxxxDe-
fault is 1, or the value specified by the user if useXxxxDefault is 0.
Function G3d_setStandard3dInputParams () (cf. Section 22.4.18) has to be used to
initialize the internal parameter structure.
Returns 1 ... if successful, 0 ... otherwise.

int
G3d_makeMapsetMapDirectory (char *mapName)

Creates the 3d mapset element for map mapName.

int
G3d_filename (char *path, *elementName, *mapName, *mapset)

Returns in path the path for element elementName for map mapName in mapset.
Note, an error occurs if mapName is fully qualified.

See 12.23 Timestamp functions (p. 214) for a complete discussion of GRASS datetime routines
(reading, writing grid3d timestamps).

22.5 Sample G3D Applications

These functions were implemented to test the library. They are not very efficient but can be
used as starting point for other applications. Some of them might actually be useful. They are
available from GRASS 5 source code in src/libes/g3d/.

void
G3d_retile (void *map, char *nameOut, int tileX, int tileY, int tileZ)

Makes a copy of map with name nameOut which has tile dimensions tileX, tileY,
tileZ.
The source code can be found in retile.c.

346

22.5 Sample G3D Applications

void
G3d_changePrecision (void *map, int precision, char *nameOut)

Makes a copy of map with name nameOut which is written with precision.
The source code can be found in changeprecision.c.

void
G3d_changeType (void *map, char *nameOut)

Makes a copy of map with name nameOut in which the cells are of type
G3D_FLOAT if they are G3D_DOUBLE in map, and in G3D_DOUBLE other-
wise.
The source code can be found in changetype.c.

void
G3d_compareFiles (char *f1, char *mapset1, char *f2, char *mapset2)

Compares the cell-values of file f1 in mapset mapset1 and file f2 in mapset
mapset2. The values are compared up to precision. Terminates in error if the
files don’t match. This function uses the more advanced features of the cache.
The source code can be found in filecompare.c.

void
G3d_getBlock (void *map, int x0, int y0, int z0, int nx, int ny, int nz, char *block, int type

Copies the cells contained in the block (cube) with vertices (x0, y0, z0) and (x0 +
nx - 1, y0 + ny - 1, z0 + nz - 1) into block. The cell-values in block are of type.
The source code can be found in getblock.c.

void
G3d_writeAscii (void *map, char *fname)

Writes the cell-values of map in ascii format to file fname. The values are orga-
nized by horizontal slices.

See ?? ?? (p. ??) for a G3D Function Index.

See 11 Compiling and Installing GRASS Modules (p. 69) for a complete discussion of Gmake-
files.

347

22 Grid3D raster volume library

348

23 DateTime Library

This chapter describes the new DateTime library contributed by GMSL.

Authors: Michael Shapiro & Bill Brown

23.1 Introduction

This Library may be used to record, manipulate, and perform arithmetic on date and time in-
formation. It is anticipated that GRASS database access routines will utilize this library to
"timestamp" data files and perform temporal analysis. This library could also be used to gen-
erate, format and compare dates for labels, titles, or site descriptions. It is used in r.timestamp
and v.timestamp.

23.1.1 Relative vs. Absolute

Successfully using this library requires understanding the two basic modes of DateTimes:

1) Absolute DateTimes express a single time or date referenced to the Gregorian calendar
(e.g. 14 Feb 1995), and

2) Relative DateTimes express a difference or length of time (e.g., 201 days 6 hours).

An interval for a DateTime is defined by its greatest unit (from) and its smallest unit (to).
The absolute DateTime "14 Feb 1995" has the interval: from=year, to=day. There are specific
rules for legal intervals. The mode and interval define the "type" of a DateTime. When doing
DateTime artithmetic certain type combinations are not allowed because the result would be
undefined.

23.1.2 Calendar Assumptions

This library uses the modern Gregorian calendar, correcting for leap years using the convention:
((year%4 == 0 && year%100 != 0) || year%400 == 0) , but also extrapolating those leap years
back in time. There are no leap second corrections and there is no correction for the missing
11 days of September 1752 (in some locales) or prior corrections (in other locales). The year is
always considered to start on January 1 and end 365 or 366 days later on December 31.

349

23 DateTime Library

Include File

#include <datetime.h>

DateTime Structure typedef struct {

int mode; /* absolute or relative */

int from, to; /* range of values */

int positive; /* positive/negative datetime */

int year, month, day;

int hour, minute;

double second;

int fracsec; /* #decimal place in printed seconds */

int tz; /* timezone - minutes from UTC */

} DateTime;

DateTimes have a 3-part type and range qualifiers from.

mode: one of

#define DATETIME_ABSOLUTE 1

#define DATETIME_RELATIVE 2

from, to: one of #define DATETIME_YEAR 1

#define DATETIME_MONTH 2

#define DATETIME_DAY 3

#define DATETIME_HOUR 4

#define DATETIME_MINUTE 5

#define DATETIME_SECOND 6

� The values for the from/to #defines must increase from YEAR to SECOND In other
words YEAR < MONTH < DAY < HOUR < MINUTE < SECOND. The idea is that the
higher elements represent higher precision for a date/time. For example, having seconds
in the time is more precise than if seconds are not present.

� There are some restrictions on legal values for from/to:

– from <= to

350

23.1 Introduction

– if the ’mode’ is ABSOLUTE, then ’from’ must be YEAR

– if the ’mode’ is RELATIVE, then

year, month, day, hour, minute, second:

� These are non-negative values.

� For ABSOLUTE types, these must be valid date/time values:

� year

� a complete year (not just the last 2 digits)

� must be positive (since 0 isn’t a legal year).

� month[1,12]

� day[1,n] where n depends on the year/month.

� hour[0,23]]

� minute[0,59]

� second[0.0,<60.0]

� For RELATIVE types, the value corresponding to ’from’ is unrestricted (except that it
can’t be negative). The other values are restricted as follows:

if from==YEAR, month is [0,11]

if from==DAY, hour is [0,23], min is [0,59], sec is [0.0,<60.0]

if from==HOUR, min is [0,59], sec is [0.0,<60.0]

if from==MINUTE, sec is [0.0,<60.0] fracsec:

� This controls the number of decimal places to print after the seconds.]

� It is only used if the ’to’ element is SECOND.

� It must be non-negative. tz:

� The time (hour/minute) in ABSOLUTE types is in local time.

� The specification of a timezone (tz) is an (subtractive)] offset to convert from local time
to UTC.

� To get UTC from localtime: LT - TZ

� tz is expressed in minutes from -720 to 780

(720 == 12 hours, 780 minutes == 13 hours).

[See ANSI X3.51-1975, section 2.2.3]

351

23 DateTime Library

� For a timezone to be allowed, the ’to’ field must be one of {MINUTE, SECOND} posi-
tive:

� this indicates if the datetime value is to considered "positive" (!=0) or "negative" (==0)

� For mode ABSOLUTE, positive==0 means BC

23.2 DateTime library functions

23.2.1 ASCII Representation

The ascii representation of DateTime is:

ABSOLUTE: 15 Jan 1994 [bc] 10:35:23.456 -0500

RELATIVE: [-] 2 years 5 months

[-] 100 days 15 hours 25 minutes 35.34 seconds

The parts can be missing.

ABSOLUTE: 1994 [bc]

Jan 1994 [bc]

15 jan 1000 [bc]

15 jan 1994 [bc] 10 [+0000]

15 jan 1994 [bc] 10:00 [+0100]

15 jan 1994 [bc] 10:00:23.34 [-0500]

RELATIVE: [-] 2 years

[-] 5 months

[-] 2 years 5 months

[-] 100 days

[-] 15 hours 25 minutes 35.34 seconds

[-] 100 days 25 minutes

[-] 1000 hours 35.34 seconds

etc.

NOTE: values missing between the from/to are assumed

to be zero; when scanning, they can be missing; when

352

23.2 DateTime library functions

formatting they will appear as 0 (to preserve the from/to):

1000 hours 0 minutes 35.34 seconds

0 days 10 hours 0 minutes

NOTE: when scanning the from/to are determined by the

fields present. Compare:

10 hours 0 minutes 35.34 seconds [from=HOUR,to=SECOND]

and

0 days 10 hours 0 minutes 35.34 seconds [from=DAY,to=SECOND]

int
datetime_scan (DateTime *dt, char *string)

Convert the ascii string into a DateTime. This determines the mode/from/to based
on the string, inits ’dt’ and then sets values in ’dt’ based on the [???]
Returns 0 if ’string’ is legal, -1 if not.

void
datetime_format (DateTime *dt, char *string)

Convert ’dt’ to a printable string. ’string’ should be large enough to hold the result,
perhaps 80 bytes.

23.2.2 Initializing, Creating and Checking DateTime Structures

int
datetime_set_type (DateTime *dt; int mode, from, to, fracsec)

� This routine must be called can be made with other datetime functions.
� initialize all the elements in dt.
� Set all values to zero except:

tz (set to illegal value - 99*24)
positive (set to 1 for positive)

� Set the type info in dt: mode, from, to, fracsec

353

23 DateTime Library

� validate the mode/from/to/fracsec (according to the rules for the mode)
� return the return value from datetime_check_type(dt)

void
datetime_get_type (DateTime *dt; int *mode, *from, *to, *fracsec)

extract the mode, from, to, and fracsec out of dt.

int
datetime_check_type (DateTime *dt)

checks the mode/from/to/fracsec in dt.
Returns:

� 0: OK
� -1: mode is invalid - not one of {ABSOLUTE,RELATIVE}
� -2: from is invalid - not one of {YEAR,MONTH,DAY,HOUR,MINUTE,SECOND}
� -3: to is invalid - not one of {YEAR,MONTH,DAY,HOUR,MINUTE,SECOND}
� -4: from/to are reversed (from>to is illegal)
� -5: invalid from/to combination for RELATIVE mode:

from in {YEAR,MONTH} but to is not, or
from in {DAY,HOUR,MINUTE,SECOND} but to is not

� -6: from is invalid for ABSOLUTE mode (from != YEAR is illegal)
� -7: fracsec is negative (only if to==SECOND)

int
datetime_is_valid_type (DateTime *dt)

Returns:
1 if datetime_check_type() returns 0
0 if not.

int
datetime_change_from_to (DateTime *dt; int from, to; int round)

Changes the from/to of the type for dt. The ’from/to’ must be legal values for the
mode of dt; (if they are not legal, then the original values are preserved, dt is not
changed).

354

23.2 DateTime library functions

Returns:
0 OK
-1 invalid ’dt’
-2 invalid ’from/to’

� round =
negative implies floor() [decrease magnitude]
0 implies normal rounding, [incr/decr magnitude]
positive implies ceil() [increase magnitude]

� If dt.from < ’from’ (losing "lower" elements), convert the "lost" values to the
equivalent value for the new ’from’ Lost elements are then set to zero. (This
case can only occur for dt.mode relative):
months += lost years * 12 ; years = 0
hours += lost days * 24 ; days = 0
minutes += lost hours * 60 ; hours = 0
seconds += lost minutes * 60.0 ; minutes = 0

� If dt.from > ’from’ (adding "lower" elements), the new elements are set to
zero.

� If dt.to < ’to’ (adding "higher" elements), the new elements are set to zero.
� If dt.to > ’to’ (losing "higher" elements), the the new ’to’ is adjusted according

to the value for ’round’ After rounding the "lost" elements are set to zero.

int
datetime_is_absolute (DateTime *dt)

Returns:
1 if dt.mode is absolute
0 if not (even if dt.mode is not defined)

int
datetime_is_relative (DateTime *dt)

Returns:
1 if dt.mode is relative
0 if not (even if dt.mode is not defined)

void
datetime_copy (DateTime *dst, *src)

Copies the DateTime [into/from ???] src

355

23 DateTime Library

int
datetime_is_same (DateTime *dt1, *dt2)

Returns:
1 if dt1 is exactly the same as dt2
0 if they differ

23.2.3 Getting & Setting Values from DateTime Structure

These routines get/set elements of ’dt’. They return:

� 0 if OK

� -1 if the value being gotten or set is not a legal value

� -2 if the from/to for ’dt’ doesn’t include this value Values don’t get set if they are invalid.

int
datetime_set_year (DateTime *dt, int year)

if dt.mode = ABSOLUTE, this also sets dt.day = 0

int
datetime_get_year (DateTime *dt, int *year)

int
datetime_set_month (DateTime *dt, int month)

if dt.mode = ABSOLUTE, this also sets dt.day = 0

int
datetime_get_month (DateTime *dt, int *month)

int
datetime_set_day (DateTime *dt, int day)

if dt.mode = ABSOLUTE, then the dt.year, dt.month:

356

23.2 DateTime library functions

if (day > datetime_days_in_month (dt.year,
dt.month)) {error}

This implies that year/month must be set for ABSOLUTE datetimes.

int
datetime_get_day (DateTime *dt, int *day)

int
datetime_set_hour (DateTime *dt, int hour)

int
datetime_get_hour (DateTime *dt, int *hour)

int
datetime_set_minute (DateTime *dt, int minute)

int
datetime_get_minute (DateTime *dt, int *minute)

int
datetime_set_second (DateTime *dt, double second)

int
datetime_get_second (DateTime *dt, double *second)

int
datetime_set_fracsec (DateTime *dt, int fracsec)

int
datetime_get_fracsec (DateTime *dt, int *fracsec)

int
datetime_check_year (DateTime *dt, int year)

Returns:
0 is legal year for dt

357

23 DateTime Library

-1 illegal year for this dt
-2 dt has no year component

int
datetime_check_month (DateTime *dt, int month)

Returns:
0 is legal month for dt
-1 illegal month for this dt
-2 dt has no month component

int
datetime_check_day (DateTime *dt, int day)

Returns:
0 is legal day for dt
-1 illegal day for this dt
-2 dt has no day component

Note: if dt.mode is ABSOLUTE, then dt.year and dt.month must also be legal,
since the ’day’ must be a legal value for the dt.year/dt.month

int
datetime_check_hour (DateTime *dt, int hour)

int
datetime_check_minute (DateTime *dt, int minute)

int
datetime_check_second (DateTime *dt, double second)

int
datetime_check_fracsec (DateTime *dt, int fracsec)

23.2.4 DateTime Arithmetic

These functions perform addition/subtraction on datetimes.

358

23.2 DateTime library functions

int
datetime_increment (DateTime *src, *incr)

This function changes the ’src’ date/time data based on the ’incr’
The type (mode/from/to) of the ’src’ can be anything.
The mode of the ’incr’ must be RELATIVE, and the type (mode/from/to) for ’incr’
must be a valid increment for ’src’. See datetime_is_valid_increment(), date-
time_check_increment()
Returns:
0: OK
-1: ’incr’ is invalid increment for ’src’
For src.mode ABSOLUTE,

� positive ’incr’ moves into the future,
� negative ’incr’ moves into the past.
� BC implies the year is negative, but all else is positive. Also, year==0 is

illegal: adding 1 year to 1[bc] gives 1[ad]

The ’fracsec’ in ’src’ is preserved.
The ’from/to’ of the ’src’ is preserved.
A timezone in ’src’ is allowed - it’s presence is ignored.
NOTE: There is no datetime_decrement() To decrement, set the ’incr’ negative.

void
datetime_set_positive (DateTime *dt)

Makes the DateTime positive. (A.D. for ABSOLUTE DateTimes)

void
datetime_set_negative (DateTime *dt)

Makes the DateTime negative. (B.C. for ABSOLUTE DateTimes)

void
datetime_invert_sign (DateTime *dt)

int
datetime_is_positive (DateTime *dt)

Returns:
1 if the Datetime is positive
0 otherwise

359

23 DateTime Library

int
datetime_difference (DateTime *a, *b, *result)

This performs the formula: result = a - b;
� both a and b must be absolute.
� result will be relative
� If a is "earlier" than b, then result will be set negative.
� b must be no more "precise" than a.

(a copy of b is "extended" to the precision of a)
� If result.to == SECOND, then result.fracsec is a.fracsec
� result will have the following from/to based on a.to: result a.to from to

YEAR YEAR YEAR MONTH YEAR MONTH DAY DAY DAY HOUR
DAY HOUR MINUTE DAY MINUTE SECOND DAY SECOND [LAYOUT
??? - see HTML]

� If either ’a’ or ’b’ has a timezone, both must have a timezone. The difference
will account for the differences in the time zones.

int
datetime_is_valid_increment (DateTime *src, *incr)

Returns:
datetime_check_increment(src, incr) == 0

int
datetime_check_increment (DateTime *src, *incr)

This checks if the type of ’incr’ is valid for incrementing/decrementing ’src’.
The type (mode/from/to) of the ’src’ can be anything.
The incr.mode must be RELATIVE
A timezone in ’src’ is allowed - it’s presence is ignored.
To aid in setting the ’incr’ type, see datetime_get_increment_type().
Returns:

� 0 valid increment
� 1 src is not a legal DateTime, error code/msg are those set by date-

time_is_valid_type()
� 2 incr is not a legal DateTime, error code/msg are those set by date-

time_is_valid_type()
� -1 incr.mode not relative
� -2 incr more precise that src

360

23.2 DateTime library functions

� -3 illegal incr, must be YEAR-MONTH
� -4 illegal incr, must be DAY-SECOND

int
datetime_get_increment_type (DateTime *src; int *mode, *from, *to, *fracsec)

This returns the components of a type (mode/from/to/fracsec) that can be used
to construct a DateTime object that can be used to increment the ’src’. Also see
datetime_set_increment_type().
returns:
0 dt is legal
!=0 why dt is illegal
Implemented as follows:

*mode = RELATIVE
*to = src.to
*fracsec = src.fracsec
if src.mode is ABSOLUTE
if src.to is in {YEAR,MONTH} then
*from = YEAR
if src.to is in {DAY,HOUR,MINUTE,SECOND} then
*from = DAY
if src.mode is RELATIVE, then
*from = src.from

int
datetime_set_increment_type (DateTime *src, *incr)

src must be legal
This is a convenience routine which is implemented as follows:

int mode, from ,to;
int fracsec;
if(datetime_get_increment_type(src, &mode, &from,

&to, &fracsec))
return datetime_get_error_code();
return datetime_set_type (incr, mode, from, to,

fracsec);

Timezone Timezones are represented in minutes from GMT in the range [-
720,+780]. For a DateTime to have a timezone, it must be of type ABSOLUTE,
and "to" must be in {MINUTE,SECOND}.

The next 3 functions return:

0: OK

361

23 DateTime Library

-1: mode not ABSOLUTE

-2: dt.to not in {MINUTE,SECOND}

-3: minutes not valid - not in the range [-720,+780]

int
datetime_check_timezone (DateTime *dt, int minutes)

int
datetime_set_timezone (DateTime *dt, int minutes)

int
datetime_get_timezone (DateTime *dt, int *minutes)

int
datetime_is_valid_timezone (int minutes)

Returns:
1 OK: -720 <= minutes <= 780 (720 = 12 hours; 780 = 13 hours)
0 NOT OK

void
datetime_unset_timezone (DateTime *dt)

Remove timezone from ’dt’
dt.tz = 99*60 (some illegal value)

int
datetime_change_timezone (DateTime *dt; int minutes)

if dt has a timezone, increment dt by minutes-dt.tz MINUTES and set dt.tz = min-
utes
Returns:
0 OK
datetime_check_timezone (dt) if not
-4 if minutes invalid

int
datetime_change_to_utc (DateTime *dt)

362

23.2 DateTime library functions

Return datetime_change_timezone (dt, 0);

void
datetime_decompose_timezone (int tz, int *hour, int *minute)

tz = abs(tz)
*hour = tz/60
*minute = tz%60
Note: hour,minute are non-negative. Must look at sign of tz itself to see if the tz
is negative offset or not. This routine would be used to format tz for output. For
example if tz=-350 this would be hour=5 minute=50, but negative. Output might
encode this as -0550: printf ("%s%02d%02d", tz<0?"-":"", hour, minute)

int
datetime_get_local_timezone (int *minutes)

Returns:
0 OK
-1 local timezone info not available

void
datetime_get_local_time (DateTime *dt)

set mode/from/to ABSOLUTE/YEAR/SECOND
set the local time into ’dt’
does not set timezone.

23.2.5 Utilities

int
datetime_days_in_month (int month, year)

int
datetime_is_leap_year (int year, ad)

int
datetime_days_in_year (int year, ad)

363

23 DateTime Library

23.2.6 Error Handling

All datetime functions that return int status codes should return:

� 0 (or positive) if OK;

� a negative integer if not; and register the error with a call to datetime_error()

Applications can test for error by:

if (datetime_function() < 0) {process the error}

int
datetime_error (int code, char *msg)

record ’code’ and ’msg’ as error code/msg (in static variables)
code==0 will clear the error (ie set msg=NULL)
returns ’code’ so that it can be used like:

return datetime_error (-1, "bad date");

char *
datetime_get_error_msg ()

returns pointer to static error msg (which is NULL if no error)

int
datetime_get_error_code ()

returns error code

void
datetime_clear_error ()

clears error code and message

364

23.2 DateTime library functions

23.2.7 Example Application

Follow these links for the source code for mini applications called incr and dsub. The incr
application simply adds or subtracts a legal increment and a datetime. The dsub application
simply adds or subtracts two datetimes given on the command line. Once compiled with the
datetime library, the following entries and results may be duplicated:

incr "3 feb 1" - "40 days" 25 Dec 1 bc
incr "31 Jan 1 bc" + "360 days" 26 Jan 1
incr "1 year 11 months" - "2 years" - 0 years 1 month
incr "- 1 year 11 months" + "2 years" 0 years 1 month
incr "- 1 year 11 months" + "36 months" 1 year 1 month
incr "1 day 23 hours 40 minutes" - "2 days" - 0 days 0 hours

20 minutes
incr "2 days 0 minutes" + "1 day 23 hours 40 minutes" 3 days

23 hours 40 minutes
incr "- 2 days 0 minutes" + "1 day 23 hours 40 minutes" - 0

days 0 hours 20 minutes
incr "- 2 days 0 minutes 5 seconds" + "3 days 23 hours 40 minutes"

1 day 23 hours 39 minutes 55 seconds
incr "1 day 23 hours 39 minutes 55 seconds" + "2 days 0 minutes

5 seconds" 3 days 23 hours 40 minutes 0 seconds
incr "28 feb 1980" + "1 day" 29 Feb 1980
incr "1 mar 1979" - "1 day" 28 Feb 1979
incr "1 mar 1979" + "365 days" 29 Feb 1980
dsub "4 jul 1776 12:00:00.123" "4 jul 1976 11:00" - 73047 days

22 hours 59 minutes 59.877 seconds
dsub "4 jul 1976 11:00" "4 jul 1776 12:00:00.123" 73047 days

23 hours 0 minutes
dsub "4 jul 1976 11:00:00.00" "4 jul 1776 12:00:00.123" 73047

days 22 hours 59 minutes 59.88 seconds
dsub "4 jul 1976 11:00:00.000" "4 jul 1776 12:00:00.123" 73047

days 22 hours 59 minutes 59.877 seconds
incr "1 apr 1963 00:00:00.000" - "1440 minutes 1.23 seconds"

30 Mar 1963 23:59:58.770
dsub "15 Jul 1995 11:53:17" "6 nov 1958 08:23:11" 13400 days

3 hours 30 minutes 6 seconds
incr "15 Jul 1995 11:53:17" - "13400 days 3 hours 30 minutes

6 seconds" 6 Nov 1958 08:23:11
incr "0 seconds" + "1 day" 86400 seconds

365

23 DateTime Library

366

24 gsurf Library for OpenGL programming (ogsf)

Author: Bill Brown GMSL/University of Illinois

24.1 Overview

The gsurf library, consisting of approximately 20,000 lines of C code, contains some 180 public
functions and about twice as many internal functions for run-time data storage, manipulation,
querying, and visualization using OpenGL. The library handles all drawing and lighting op-
erations, including use of user-defined clipping planes and drawing various style "fences" on
clipping planes when drawing multiple surfaces, and treats datasets as objects which can be
used for various attributes of the rendering. It allows data sharing (e.g., same data for more than
one attribute of same or different surfaces), separate masking for each surface, multiple sur-
faces, vector sets, or point sets, and will also allow multiple volumes. The library provides all
query features such as 3D "point on surface", keyframe animation routines, and full state sav-
ing functionality. Database-specific routines for interfacing with the GRASS GISlib are kept
isolated for easier library reuse with other databases. The gsurf library is not dependent upon
any particular interface library, and has been used successfully with both Motif and Tcl/Tk. It
is used for NVIZ visualization tool.

The library is designed to provide a unique "handle" or identifier number to the calling program
for each new geographic object added to the model. The object could be a surface, vector set,
or point set, which could each be defined by one or more database files. Once created, the
application only needs to keep track of the "handles" to the objects (which are returned by the
creation routines); for example, to draw a surface the application would make the call:

GS_draw_surf(id)

where id is the handle number. To associate a vector set with a surface and then draw all sur-
faces with the vector set draped over the one selected, the application would use the calls:

GV_select_surf(vid, sid)

GS_alldraw_surf()

367

24 gsurf Library for OpenGL programming (ogsf)

GV_draw_vect(vid)

where vid and sid are the handles for the vector set and surface. Similarly, to query or change at-
tributes of the object, the handle is used in conjunction with the new attribute, as in: GV_set_vectmode(id,
mem, color, width)

24.2 Naming Conventions

The following naming conventions for function prefixes are used:

� GS_ Functions which have to do with loading & manipulating surfaces. Also functions
for library initialization, setting global variables, viewer positioning, and lighting.

� GSU_ Utility functions for distance calculations, common 2D & 3D unit vector opera-
tions such as cross product or vector arithmetic.

� GV_ Functions which have to do with loading & manipulating vector sets.

� GP_ Functions which have to do with loading & manipulating point sets.

� GVL_ Functions which have to do with loading & manipulating 3D volumes.

� GK_ Functions which have to do with setting & manipulating keyframes for viewer po-
sition animation (fly-bys).

Programmers’ documentation is currently incomplete, but see the following for more details of
the library design and capabilities in the appendix:

� public function prototypes

� public include file gsurf.h

� public include file keyframe.h

� public color packing utility macros rgbpack.h

� private types and defines gstypes.h

� private utilities gsget.h

24.3 Public function prototypes

24.3.1 Function Prototypes for gsurf Library

void *GS_Get_ClientData (int id)

368

24.3 Public function prototypes

float GS_P2distance (float *from, float *to)

GS_Set_ClientData (int id, void *clientd)

GS_alldraw_cplane_fences ()

GS_alldraw_surf()

GS_alldraw_wire()

GS_background_color()

int GS_check_cancel()

GS_clear (int col)

GS_default_draw_color()

GS_delete_surface (int id)

GS_distance (float *from, *to)

GS_done_draw()

int
GS_draw_X (int id, float *pt)

pt only has to have an X & Y value in true world coordinates

GS_draw_cplane (int num)

GS_draw_cplane_fence (int hs1, int hs2, int num)

GS_draw_lighting_model()

GS_draw_line_onsurf (int id, float x1, float y1, float x2, float y2)

GS_draw_surf (int id)

GS_draw_wire (int id)

int
GS_dv3norm(double dv1[3])

Changes dv1 so that it is a unit vector

double

369

24 gsurf Library for OpenGL programming (ogsf)

GS_geodistance (double *from, double *to, char *units)

distance between 2 coordinates

Returns distance between two geographic coordinates in current projection.

Units is one of: "meters", "miles", "kilometers", "feet", "yards", "nmiles" (nautical miles),
"rods", "inches", "centimeters", "millimeters", "micron", "nanometers", "cubits", "hands", "fur-
longs", "chains".

Default is meters.

GS_get_SDscale (float *scale)

GS_get_SDsurf (int id)

double GS_get_aspect()

GS_get_att (int id, int att, int *set, float *constant, char *mapname)

GS_get_cat_at_xy (int id, int att, char *catstr, float x, float y)

GS_get_dims (int id, int *rows, int *cols)

int
GS_get_distance_alongsurf (int hs, int use_exag, float x1, float y1, float x2, float y2, float
*dist)

Returns distance following terrain.

GS_get_drawmode (int id, int mode)

GS_get_drawres (int id, int *xres, int *yres, int *xwire, int *ywire)

GS_get_exag_guess (int id, float *exag)

int GS_get_fencecolor()

GS_get_focus (float *realto)

int
GS_get_fov()

Returns field of view, in 10ths of degrees.

GS_get_from (float *fr)

370

24.3 Public function prototypes

GS_get_from_real (float *fr)

GS_get_longdim (float *dim)

GS_get_maskmode (int id, int mode)

int
GS_get_modelposition (float *siz, float pos[3])

Retrieves coordinates for lighting model position, at center of view, (nearclip * 2)
from eye.

GS_get_nozero (int id, int att, int *mode)

GS_get_region (float *n, float *s, float *w, float *e)

GS_get_scale (float *sx, float *sy, float *sz, int doexag)

int
GS_get_selected_point_on_surface (int sx, int sy, int *id, float *x, float *y, float *z)

Given screen coordinates sx & sy, find closest intersection of view ray with surfaces
and return coordinates of intersection in x, y, z, and identifier of surface in id.
Returns 0 if no intersections found, otherwise number of intersections.

GS_get_surf_list (int *numsurfs)

GS_get_to (float *to)

GS_get_trans (int id, float *xtrans, float *ytrans, float *ztrans)

int GS_get_twist()

int
GS_get_val_at_xy (int id, char *att, char *valstr, float x, float y)

Prints "NULL" or the value (i.e., "921.5") to valstr.
Colors are translated to rgb and returned as Rxxx Gxxx Bxxx
Usually call after GS_get_selected_point_on_surface
Returns -1 if point outside of window or masked, otherwise 1

GS_get_viewdir (float dir[3])

GS_get_wire_color (int id, int *colr)

371

24 gsurf Library for OpenGL programming (ogsf)

int
GS_get_zextents (int id, float *min, float *max, float *mid)

Returns Z extents for a single surface.

int
GS_get_zrange (float *min, float *max, int doexag)

Returns Z extents for all loaded surfaces.

int
GS_get_zrange_nz (float *min, float *max)

Returns Z extents for all loaded surfaces, treating zeros as "no data".

float GS_global_exag()

int GS_has_transparency()

GS_init_view()

GS_is_masked (int id, float *pt)

GS_libinit()

GS_lights_off()

GS_lights_on()

GS_load_3dview(char *vname, int surfid)

GS_load_att_map (int id, char *filename, int att)

int
GS_look_here (int sx, int sy)

Reset center of view to screen coordinates sx, sy.
Send screen coords sx & sy, lib traces through surfaces & sets new center to point
of nearest intersection. If no intersection, uses line of sight with length of current
view ray (eye to center) to set new center.

GS_moveto (float *pt)

372

24.3 Public function prototypes

GS_moveto_real (float *pt)

int GS_new_light()

GS_new_surface()

int GS_num_surfs()

GS_ready_draw()

GS_save_3dview(char *vname, int surfid)

GS_set_SDscale (float scale)

GS_set_SDsurf (int id)

GS_set_att_const (int id, int att, float constant)

GS_set_att_defaults (float defs[MAX_ATTS], null_defs[MAX_ATTS])

GS_set_cancel (int c)

GS_set_cplane (int num)

GS_set_cplane_rot (int num, float dx, float dy, float dz)

GS_set_cplane_trans (int num, float dx, float dy, float dz)

GS_set_cxl_func(void (*f)())

int
GS_set_draw (int where)

Sets which buffer to draw to.
where should be one of: GSD_BOTH, GSD_FRONT, GSD_BACK

GS_set_drawmode (int id, int mode)

GS_set_drawres (int id, int xres, int yres, int xwire, int ywire)

GS_set_exag (int id, float exag)

GS_set_fencecolor (int mode)

GS_set_focus (float *realto)

GS_set_focus_center_map (int id)

GS_set_fov (int fov)

GS_set_global_exag (float exag)

373

24 gsurf Library for OpenGL programming (ogsf)

GS_set_maskmode (int id, int mode)

GS_set_nofocus()

GS_set_nozero (int id, int att, int mode)

GS_set_swap_func(void (*f)())

GS_set_trans (int id, float xtrans, float ytrans, float ztrans)

int
GS_set_twist (int t)

t is tenths of degrees clockwise from 12:00.

GS_set_viewdir (float dir[3])

GS_set_viewport (int left, int right, int bottom, int top)

GS_set_wire_color (int id, int colr)

GS_setall_drawmode (int mode)

GS_setall_drawres (int xres, int yres, int xwire, int ywire)

int
GS_setlight_ambient (int num, float red, float green, float blue)

Red, green, blue from 0.0 to 1.0

int
GS_setlight_color (int num, float red, float green, float blue)

Red, green, blue from 0.0 to 1.0

GS_setlight_position (int num, float xpos, float ypos, float zpos, int local)

GS_surf_exists (int id)

GS_switchlight (int num, int on)

GS_transp_is_set()

GS_unset_SDsurf()

374

24.3 Public function prototypes

GS_unset_att (int id, int att)

GS_unset_cplane (int num)

GS_update_curmask (int id)

GS_update_normals (int id)

GS_v2dir (float v1[2], float v2[2], float v3[2])

GS_v3add (float v1[3], float v2[3])

int
GS_v3cross (float v1[3], float v2[3], float v3[3])

returns the cross product v3 = v1 cross v2

GS_v3dir (float v1[3], float v2[3], float v3[3)

GS_v3eq (float v1[3], float v2[3])

GS_v3mag (float v1[3], float *mag)

int
GS_v3mult (float v1[3], float k)

v1 *= k

int
GS_v3norm (float v1[3])

Changes v1 so that it is a unit vector

int
GS_v3normalize (float v1[3], float v2[3])

Changes v2 so that v1v2 is a unit vector

int
GS_v3sub (float v1[3], float v2[3])

375

24 gsurf Library for OpenGL programming (ogsf)

v1 -= v2

void *GV_Get_ClientData (int id)

GV_Set_ClientData (int id, int clientd)

GV_alldraw_vect()

GV_delete_vector (int id)

GV_draw_fastvect (int vid)

GV_draw_vect (int vid)

GV_get_trans (int id, float *xtrans, float *ytrans, float *ztrans)

int *
GV_get_vect_list (int *numvects)

USER must free when no longer needed!

GV_get_vectmode (int id, int *mem, int *color, int *width)

GV_get_vectname (int id, char *filename)

GV_load_vector (int id, char *filename)

int GV_new_vector()

int GV_num_vects()

int
GV_select_surf (int hv, int hs)

Select surface identified by hs to have vector identified by hv draped over it.

GV_set_trans (int id, float xtrans, float ytrans, float ztrans)

GV_set_vectmode (int id, int mem, int color, int width)

GV_surf_is_selected (int hv, int hs)

GV_unselect_surf (int hv, int hs)

GV_vect_exists (int id)

void *GP_Get_ClientData (int id)

376

24.3 Public function prototypes

GP_Set_ClientData (int id, void *clientd)

GP_alldraw_site()

GP_attmode_color (int id, char *filename)

GP_attmode_none (int id)

GP_delete_site (int id)

GP_draw_site (int id)

int *
GP_get_site_list (int *numsites)

USER must free when no longer needed!

GP_get_sitemode (int id, int *atmod, int *color, int *width, float *size, int *marker)

GP_get_sitename (int id, char *filename)

GP_get_trans (int id, float *xtrans, float *ytrans, float *ztrans)

GP_get_zmode (int id, int *use_z)

GP_load_site (int id, char *filename)

int GP_new_site()

int GP_num_sites()

GP_select_surf (int hp, int hs)

GP_set_sitemode (int id, int atmod, int color, int width, float size, int marker)

GP_set_trans (int id, float *xtrans, float *ytrans, float *ztrans)

GP_set_zmode (int id, int use_z)

GP_site_exists (int id)

GP_surf_is_selected (int hp, int hs)

GP_unselect_surf (int hp, int hs)

int
GK_add_key (float pos, unsigned long fmask, int force_replace, float precis)

377

24 gsurf Library for OpenGL programming (ogsf)

The pos value is the relative position in the animation for this particular keyframe -
used to compare relative distance to neighboring keyframes, it can be any floating
point value.
The fmask value can be any of the following or’d together: KF_FROMX_MASK
KF_FROMY_MASK KF_FROMZ_MASK KF_FROM_MASK
(KF_FROMX_MASK | KF_FROMY_MASK | KF_FROMZ_MASK)
KF_DIRX_MASK KF_DIRY_MASK KF_DIRZ_MASK KF_DIR_MASK
(KF_DIRX_MASK | KF_DIRY_MASK | KF_DIRZ_MASK)
KF_FOV_MASK KF_TWIST_MASK
KF_ALL_MASK (KF_FROM_MASK | KF_DIR_MASK | KF_FOV_MASK |
KF_TWIST_MASK)
Other fields will be added later.
The value precis and the boolean force_replace are used to determine if a keyframe
should be considered to be at the same position as a pre-existing keyframe. e.g., if
anykey.pos - newkey.pos <= precis, GK_add_key will fail unless force_replace is
TRUE.
Returns 1 if key is added, otherwise -1.

void
GK_clear_keys()

Deletes all keyframes, resets field masks. Doesn’t change number of frames re-
quested.

int
GK_delete_key (float pos, float precis, int justone)

The values pos & precis are used to determine which keyframes to delete. Any
keyframes with their position within precis of pos will be deleted if justone is zero.
If justone is non-zero, only the first (lowest pos) keyframe in the range will be
deleted.
Returns number of keys deleted.

int
GK_do_framestep (int step, int render)

Moves the animation to frame number "step". Step should be a value between 1
and the number of frames. If render is non-zero, calls draw_all.

int
GK_move_key (float oldpos, float precis, float newpos)

378

24.3 Public function prototypes

Precis works as in other functions - to identify keyframe to move. Only the first
keyframe in the precis range will be moved.
Returns number of keys moved (1 or 0).

int
GK_set_interpmode (int mode)

Sets interpolation mode to KF_LINEAR or KF_SPLINE

void
GK_set_numsteps (int newsteps)

Sets the number of frames to be interpolated from keyframes.

int
GK_set_tension (float tens)

Sets value for tension when interpmode is KF_SPLINE. The value tens should be
between 0.0 & 1.0.

void
GK_show_path (int flag)

Draws the current path.

GK_show_site (int flag)

GK_show_vect (int flag)

void GK_showtension_start()

void
GK_showtension_stop()

Use GK_showtension_start/GK_update_tension/GK_showtension_stop to initial-
ize & stop multi-view display of path when changing tension.

379

24 gsurf Library for OpenGL programming (ogsf)

void
GK_update_frames()

Recalculates path using the current number of frames requested. Call after chang-
ing number of frames or when Keyframes change.

void GK_update_tension()

void *GVL_Get_ClientData (int id)

GVL_Set_ClientData (int id, void *clientd)

GVL_alldraw_vol()

GVL_delete_volume (int id)

GVL_draw_fastvol (int vid)

GVL_draw_vol (int vid)

GVL_get_trans (int id, float *xtrans, float *ytrans, float *ztrans)

int *GVL_get_vol_list (int *numvols)

GVL_get_volmode (int id, int *viztype)

GVL_get_volname (int id, char *filename)

GVL_load_volume (int id, char *filename)

int GVL_new_vol()

int GVL_num_vol()

GVL_set_trans (int id, float xtrans, float ytrans, float ztrans)

GVL_set_volmode (int id, int viztype)

int GVL_vol_exists (int id)

24.3.2 Public include file gsurf.h

See src/libes/ogsf/gsurf.h

24.3.3 Public include file keyframe.h

See src/libes/ogsf/keyframe.h

380

24.3 Public function prototypes

24.3.4 Public color packing utility macros rgbpack.h

See src/libes/ogsf/rgbpack.h

24.3.5 Private types and defines gstypes.h

See src/libes/ogsf/gstypes.h

24.3.6 Private utilities gsget.h

See src/libes/ogsf/gsget.h

381

24 gsurf Library for OpenGL programming (ogsf)

382

25 Numerical math interface to LAPACK/BLAS

Author:

David D. Gray

(under development)

This chapter provides an explanation of how numerical algebra routines from LAPACK/BLAS
() can be accessed through the GRASS GIS library "‘gmath"’. Most of the functions are wrap-
per modules for linear algebra problems, a few are locally implemented.

Getting BLAS/LAPACK (one package):
http://www.netlib.org/lapack/
http://netlib.bell-labs.com/netlib/master/readme.html

Pre-compiled binaries of LAPACK/BLAS are provided on many Linux distributions.

25.1 Implementation

The function name convention is as follows:

1. G_matrix_*(): corresponding to Level3 BLAS (matrix-matrix),

2. G_matvect_*(): corresponding to Level2 BLAS (vector-matrix) and

3. G_vector_*(): corresponding to Level1 BLAS (vector-vector)

25.2 Matrix-Matrix functions

mat_struct * Initialise a
matrix structureG_matrix_init (int rows, int cols, int ldim)

383

http://www.netlib.org/lapack/
http://netlib.bell-labs.com/netlib/master/readme.html

25 Numerical math interface to LAPACK/BLAS

Initialise a matrix structure. Set the number of rows with the first and columns with
the second parameter. The third parameter lead dimension (>= no. of rows) needs
attention by the programmer as it is related to the Fortran workspace:
A 3x3 matrix would be stored as

[x x x _][x x x _][x x x _]

This work space corresponds to the sequence:
(1,1) (2,1) (3,1) unused (1,2) (2,2) ... and so on, ie. it is column major. So al-
though the programmer uses the normal parameter sequence of (row, col) the en-
tries traverse the data column by column instead of row by row. Each block in the
workspace must be large enough (here 4) to hold a whole column (3), and trailing
spaces are unused. The number of rows (ie. size of a column) is therefore not
necessarily the same size as the block size allocated to hold them (called the "‘lead
dimension"’). Some operations may produce matrices a different size from the in-
puts, but still write to the samer workspace. This may seem awkward but it does
make for efficient code. Unfortunately this creates a responsibility on the program-
mer to specify the lead dimension (>= no. of rows). In most cases the programmer
can just use the rows however. So for 3 rows/2 cols it would be called:
G_matrix_init (3, 2, 3);

mat_struct *Set parameters
for a matrix

structure
G_matrix_set(mat_struct *A, int rows, int cols, int ldim)

Set parameters for a matrix structure that is allocated but not yet initialised fully.
Note:

G_matrix_set() is an alternative to G_matrix_init(). G_matrix_init() initialises and
returns a pointer to a dynamically allocated matrix structure (ie. in the process
heap). G_matrix_set() sets the parameters for an already created matrix structure.
In both cases the data workspace still has to be allocated dynamically.
Example 1:

mat_struct *A;
G_matrix_init (A, 4, 3, 4);

Example 2:

mat_struct A; /* Allocated on the local stack */
G_matrix_set (&A, 4, 3, 4);

mat_struct *Add two
matrices G_matrix_add (mat_struct *mt1, mat_struct *mt2)

Add two matrices and return the result. The receiving structure should not be ini-
tialised, as the matrix is created by the routine.

384

25.2 Matrix-Matrix functions

mat_struct * Multiply two
matricesG_matrix_product (mat_struct *mt1, mat_struct *mt2)

Multiply two matrices and return the result. The receiving structure should not be
initialised, as the matrix is created by the routine.

mat_struct * Scale matrix
G_matrix_scale (mat_struct *mt1, const double c)

Scale the matrix by a given scalar value and return the result. The receiving struc-
ture should not be initialised, as the matrix is created by the routine.

mat_struct * Subtract two
matricesG_matrix_subtract (mat_struct *mt1, mat_struct *mt2)

Subtract two matrices and return the result. The receiving structure should not be
initialised, as the matrix is created by the routine.

mat_struct * Copy a matrix
G_matrix_copy (const mat_struct *A)

Copy a matrix by exactly duplicating its structure.

mat_struct * Transpose a
matrixG_matrix_transpose (mat_struct *mt)

Transpose a matrix by creating a new one and populating with transposed elements.

void Print out a
matrixG_matrix_print (mat_struct *mt)

Print out a representation of the matrix to standard output.

int Solve a general
system A.X=BG_matrix_LU_solve (const mat_struct *mt1, mat_struct **xmat0, const mat_struct

*bmat, mat_type mtype)

385

25 Numerical math interface to LAPACK/BLAS

Solve a general system A.X=B, where A is a NxN matrix, X and B are NxC
matrices, and we are to solve for C arrays in X given B. Uses LU decomposition.

Links to LAPACK function dgesv_() and similar to perform the core routine. (By
default solves for a general non-symmetric matrix.)
mtype is a flag to indicate what kind of matrix (real/complex, Hermitian, symmet-
ric, general etc.) is used (NONSYM, SYM, HERMITIAN).
Warning: NOT YET COMPLETE: only some solutions’ options available. Now,
only general real matrix is supported.

mat_struct *Matrix
inversion using

LU
decomposition

G_matrix_inverse (mat_struct *mt)

Calls G_matrix_LU_solve() to obtain matrix inverse using LU decomposition. Re-
turns NULL on failure.

voidFree up
allocated

matrix
G_matrix_free (mat_struct *mt)

Free up allocated matrix.

intSet the value of
the (i,j)th

element
G_matrix_set_element (mat_struct *mt, int rowval, int colval, double val)

Set the value of the (i,j)th element to a double value. Index values are C-like ie.
zero-based. The row number is given first as is conventional. Returns -1 if the
accessed cell is outside the bounds.

doubleRetrieve value
of the (i,j)th

element
G_matrix_get_element (mat_struct *mt, int rowval, int colval)

Retrieve the value of the (i,j)th element to a double value. Index values are C-like
ie. zero-based.
Note: Does currently not set an error flag for bounds checking.

25.3 Matrix-Vector functions

vec_struct *Retrieve a
column of

matrix
G_matvect_get_column (mat_struct *mt, int col)

386

25.4 Vector-Vector functions

Retrieve a column of the matrix to a vector structure. The receiving structure should
not be initialised, as the vector is created by the routine. Col 0 is the first column.

vec_struct * Retrieve a row
of matrixG_matvect_get_row (mat_struct *mt, int row)

Retrieve a row of the matrix to a vector structure. The receiving structure should
not be initialised, as the vector is created by the routine. Row 0 is the first number.

int Convert matrix
to vectorG_matvect_extract_vector (mat_struct *mt, vtype vt, int indx)

Convert the current matrix structure to a vector structure. The vtype is RVEC
or CVEC which specifies a row vector or column vector. The indx indicates the
row/column number (zero based).

int Revert a vector
to matrixG_matvect_retrieve_matrix (vec_struct *vc)

Revert a vector structure to a matrix.

25.4 Vector-Vector functions

vec_struct * Initialise a
vector structureG_vector_init (int cells, int ldim, vtype vt)

Initialise a vector structure. The vtype is RVEC or CVEC which specifies a row
vector or column vector.

int Set parameters
for vector
structure

G_vector_set (vec_struct *A, int cells, int ldim, vtype vt, int vindx)

Set parameters for a vector structure that is allocated but not yet initialised fully.
The vtype is RVEC or CVEC which specifies a row vector or column vector.

387

25 Numerical math interface to LAPACK/BLAS

vec_struct * Copy a vector
G_vector_copy (const vec_struct *vc1, int comp_flag)

Copy a vector to a new vector structure. This preserves the underlying structure
unless you specify DO_COMPACT comp_flag:
0 Eliminate unnecessary rows (cols) in matrix
1 ... or not

doubleCalculates
euclidean norm G_vector_norm_euclid (vec_struct *vc)

Calculates the euclidean norm of a row or column vector, using BLAS routine
dnrm2_()

doubleCalculates
maximum value G_vector_norm_maxval (vec_struct *vc, int vflag)

Calculates the maximum value of a row or column vector. The vflag setting defines
which value to be calculated:
vflag:
1 Indicates maximum value
-1 Indicates minimum value
0 Indicates absolute value [???]

Note: More functions and wrappers will be implemented soon (11/2000).

25.5 Notes

The numbers of rows and columns is stored in the matrix structure:

printf(" M1 rows: %d, M1 cols: %d\n", m1->rows, m1->cols);

Draft Notes:

* G_vector_free() can be done by G_matrix_free().

#define G_vector_free(x) G_matrix_free((x))

* Ax calculations can be done with G_matrix_multiply()

* Vector print can be done by G_matrix_print().

388

25.6 Example

#define G_vector_print(x) G_matrix_print((x))

25.6 Example

The Gmakefile needs a reference to $(GMATHLIB) in LIBES line.

Example Gmakefile:

PGM=mytest
HOME=.

LIBES=$(GMATHLIB) $(GISLIB) $(BLASLIB) $(LAPACKLIB) -lblas -llapack -lg2c
LIST = main.o

$(HOME)/$(PGM): $(LIST) $(LIBES)
$(CC) $(LDFLAGS) -o $@ $(LIST) $(LIBES) $(MATHLIB) $(XDRLIB)

$(LIBES): #

Example module:

#include "la.h"
#include "gis.h"

int main(int argc, char *argv[])
{

mat_struct *matrix;
double val;

/* init a 3x2 matrix */
matrix=G_matrix_init (3, 2, 3);

/* set cell element 0,0 in matrix to 2.2: */
G_matrix_set_element (matrix, 0, 0, 2.2);

/* retrieve this value */
val = G_matrix_get_element (matrix, 0, 0);

/*print it */
fprintf(stderr, "Value: %g\n", val);

/* Free the memory */
G_matrix_free (matrix);

}

389

25 Numerical math interface to LAPACK/BLAS

390

26 GUI programming: Graphical user interfaces

26.1 TclTkGRASS

Author:
Jacques Bouchard, based on L.A.S. initial developments
various contributors

TclTkGRASS is an tcl/tk based GUI (graphical user interface) for GRASS. It relies on the
modular concept of GRASS.

26.1.1 TclTkGRASS Programming

TclTkGRASS is highly customizable. Module windows can be defined, the menu structure
completely modified. The programming of new modules within the TCLTKGRASS environ-
ment can be done as follows:

1. Adding a module window into TCLTKGRASS:

To add a module into the TCLTKGRASS windows environment you have to edit
tcltkgrass/main/menu.tcl

The structure of the menu file is as follows:

a) Menu with submenu:
<Menuentry> {
"<Submenu entry 1> {

"source $env(TCLTKGRASSBASE)/module/<module.definitionfile>"
}

"<Submenu entry 2> {
"source $env(TCLTKGRASSBASE)/module/<module.definitionfile>"
}

}

b) Simple Submenu:
"<Submenu entry 1> {

"source $env(TCLTKGRASSBASE)/module/<module.definitionfile>"
}

c) Direct module call (if the module has to used interactively):
"<Submenu entry 1> {

"exec xterm -exec <grassmodule>"
}

391

26 GUI programming: Graphical user interfaces

d) Example:
"Misc tools" {

"Convert raster to lines from a thinned raster" {
"source $env(TCLTKGRASSBASE)/module/r.line"

}
"Vector digitizer" {

"exec xterm -exec v.digit"
}

2. Programming the module window itself (the module.definitionfile)

a) Programming of non-interactive module windows
Here a listing of the entries follows (the braces are important, but do not insert "<"
and ">" !). See an example below.
First entry:

interface_build {
Second entry:

{<grass module name>}
Third entry (interactive flag):

1 <if data must be input interactively from terminal (xterm),>
<or> 0 <...else (for setting paramters through module menu)>
Fourth entry:

{<Comment to be displayed in first module windows line>.}
Fifth to xxx line: query for variables:

{entry <module variable> {<Comment for this variable>:} 0 <button>}
Fifth to xxx line: checkboxes for options:

{checkbox <module option> {<Comment for this option>.} "" <module option>}
Last line:

}

Module variables have to be specified for input and output files. Module options
allow for example to run this module quietly, or output special information in a
tcltkgrass window etc. The "interactive flag" indicates if the module will be di-
rected through the window entries or through a xterm (see description and example
below). You get all required information about a specific GRASS module from the
GRASS man pages, if you want to define the module yourself.

The <button> may be:
raster: query GRASS raster map
+raster: query several GRASS raster maps (for multiple input separated

with comma
vector: query GRASS vector map
+vector: query several GRASS vector maps (for multiple input separated

with comma
sites: query GRASS site file
+sites: query several GRASS sites maps (for multiple input separated

with comma
file: choose file for reading from user’s home directory
File: choose file for writing from user’s home directory
xy: pick x,y coordinates on the active monitor window
xyz.<map>: pick x,y coordinates on the active monitor window

+ z value for the raster map whose name is in variable <map>
(compare d.3d)

"": no query button
arc: choose ARC/INFO file in <location>/<mapset>/arc

392

26.1 TclTkGRASS

area: choose area unit
color: choose a color from a list (for display commands)
Color: choose a color from a list including color "none" in the list
3Dcolor: choose a color from a list including color "color" in the list

(only used in d.3d)
distance: choose distance unit (km, m, etc.)
dlg: choose dlg file
dlg_ascii: choose dlg ascii file
font: choose font
group: choose image group
subgroup: choose image subgroup
signature: choose signature file from subgroup
icon: choose paint icon file
label: choose paint label file
paint: choose painter device
monitor: choose monitor
region: choose region definition file
spheroid: choose spheroid

...some more feature: see script/gui.tcl for details.
To create fields in the module window, you have three options:

- "entry": This is an empty line

Generally: {entry parameter {description:} 0 button}
(you may specify "" instead of button)

Example: {entry input {Input site map:} 0 sites}

- "checkbox": Use this clickable box for flags
Generally: {checkbox flag {description} "" flag}
Example: {checkbox -h {Display reference information.} "" -h}

- "scale": This displays a numbered adjust bar
Generally: {scale parameter {description} min max interval}
Example: {scale size {Neighborhood size:} 1 25 2}

The easiest way is to develop new module windows from existing definitions.
Example:

interface_build {
{s.surf.tps} 0
{Interpolates and computes topographic analysis from site map using spline with tension.}
{entry input {Input site map:} 0 sites}
{entry elev {Output elevation raster map:} 0 raster}
{entry slope {Output slope raster map (optional):} 0 raster}
{entry aspect {Output aspect raster map (optional):} 0 raster}
{entry pcurv {Output profile curvature raster map (optional):} 0 raster}
{entry tcurv {Output tangential curvature raster map (optional):} 0 raster}
{entry mcurv {Output mean curvature raster map (optional):} 0 raster}
{entry maskmap {Use this existing raster file name as a mask (optional):} 0 raster}
{entry dmin {Minimum distance between points (default: 0.5 grid cell):} 0 ""}
{entry zmult {Multiplier for z-value in site map (default: 1):} 0 ""}
{entry tension {Tension parameter (appropriate for smooth surfaces) (default: 40):} 0 ""}
{entry smooth {Smoothing parameter (default: 0 = no smoothing:} 0 ""}
{entry segmax {Maximum number of points per segment (default: 40):} 0 ""}
{entry npmin {Minimum number of points for interpolation (default: 150, see man page):} 0 ""}
{checkbox -h {Display reference information.} "" -h}

}

b) Speciality: The GRASS module shall be used interactively from xterm

393

26 GUI programming: Graphical user interfaces

This will be achieved through "1" in the second line of the module definition.

Example:
interface_build {

{r.mapcalc} 1
{Raster map layer data calculator.}

}

c) Speciality: Define standard options for GRASS modules
Some modules need options which the user should not be able to change. You
can enter a command name with several words in the second line of the mod-
ule.definitionfile.
Example: v.support
interface_build {

{v.support option=build} 0
{(Re)Builds topology of vector file.}
{entry map {Name of the GRASS vector file to be (re)build:} 0 vector}
{entry threshold {Snap threshold value (valid only with -s option):} 0 ""}
{checkbox -s {Snap nodes.} "" -s}
{checkbox -r {Set map region from data.} "" -r}

}

The easiest way is to copy existing module.definitionfile and change this copy to
your purposes. Some more internal details are stored in the comments of script/gui.tcl.

26.2 XML/Python

Author:
Jan-Oliver Wagner

394

27 Digitizer/Mouse/Trackball Files (.dgt)

The following is derived from the manual for Line Trace Plus (LTPlus) by John Dabritz and the
Forest Service. The code for the digitizer drivers was taken from LTPlus and modified. The
’additions’ file describes what has been changed from the original LTPlus version. Note that
LTPlus supports mice and trackballs as well as digitizers. These can be ignored for v.digit, and
herein, ”digitizer” will be used to correspond to digitizers, mice, and trackballs.

27.1 Rules for Digitizer Configuration Files

The following are rules and restrictions for creating .dgt files.

1. No line may exceed 95 characters in length.

2. In a line, all characters following (and including) a pound sign (#) are considered comments
(ignored). To put a pound sign into a string not to be ignored, use a - 035. Any ascii character
can be specified in this way: a backslash followed by a 3-digit (ascii decimal) number specifying
the ascii decimal value of the character.

3. All other non-blank characters must be within brackets {} OR be one of the following (which
are followed by brackets):

setup

startrun

startpoint

startquery

stop

query

format

These represent the groups of information used to initiate, gather, and stop input from a graphics
input device (digitizer, mouse, track-ball ect.). Only one (left or right) bracket may be on a
single line, although text and brackets may share a line. See 27.2 Digitizer Configuration File
Commands (p. 396)

395

27 Digitizer/Mouse/Trackball Files (.dgt)

4. Limits:

a) The file can have no more than 100 non-blank, non-comment lines.

b) Other limits are listed with their data type, below.

5. The legal lines within brackets depend on the group to which the brackets belong. ALL DATA
LINES ARE DEPENDENT ON THE PARTICULAR DEVICE. YOU MUST REFER TO THE
TECHNICAL REFERENCE MANUAL FOR THE PARTICULAR DEVICE (mouse/digitizer/track-
ball) in order to determine which parameters and which values need to be used. The groups
(setup, startrun, startpoint, startquery, stop, query , format) may be in any order. Within the
groups: startrun, startpoint, startquery, query, and stop the order of command lines is important.
These are the legal line formats for each grouping:

27.2 Digitizer Configuration File Commands

The following is an in-depth description of each command available in the .dgt digitizer files.

27.2.1 Setup

This data is used to setup the communication link with the digitizer and is used during interpre-
tation of the digitizer data.

27.2.1.1 Serial Line Characteristics

baud = n This line is optional, default = 9600 if not specified. If specified, n must be one of:
300, 600, 1200, 1800, 2400, 4800 9600, or 19200.

parity = str str must be ”odd”, ”even”, or ”none”. This item is optional, and defaults to none if
not specified.

data_bits = n The number of data bits used (does NOT include parity bits, if any). Choices =
5,6,7,8 (default = 8)

stop_bits = n The number of stop bits used on the serial line. Choices are 1, or 2. Optional,
default = 1.

buttons = n Number of buttons on digitizer cursor. This entry lets v.digit know if digitizer keys
are available for input. Default is 0, so an entry must be made if the digitizer cursor is to be
used for input. If the value of buttons is less than 5, keyboard keys will also be used for input.

buttonstart = n Number of the first key on the digitizer cursor. Usually 0 or 1. Default is 0. This
is strictly for comunicating with the user. If you have arrow keys on your puck, you can set
buttonstart to whatever you want.

396

27.2 Digitizer Configuration File Commands

buttonoffset = n Difference between 1 and the value sent by the lowest digitizer button. In other
words, if the digitizer keys sent the values 0, 1, ..., n, buttonoffset would equal one, if the button
output already starts with one, buttonoffset would be zero (the default value). Although these
are the two most common cases, it is legal for buttonoffset to be any integer value. For instance
if your keys for some reason output the values 16-32, it would be legal to use the value -15 as
the buttonoffset.

footswitch = 0 or 1 Does the digitizer have a footswitch? Zero for no, one for yes.

digname = string Name of the digitizer.

description = string One line description of digitizer, format, etc.

button_up_char = c Character that indicates that no button is pressed. Only appropriate if format
is ascii and includes a button press byte.

27.2.1.2 Data Interpretation Characteristics

debounce = d [r] These values control the delay and repeat rate for a digitizer or mouse button
that is held down (who says you can’t hold a good button down!) The first value (delay) specifies
the number of continuous reports with the same button press which may be received before it
is taken as a second button press. The second value, separated by a space, is the repeat rate,
which specifies the number of continuous reports between further reports received which will
be taken as subsequent button presses. The second value (repeat rate) is optional (default is 1/3
of the first value). A O for the first value indicates an infinite delay. For this value indicates an
indefinite delay. For this value, only 1 key press will be taken no matter how long a button is
held down. If no debounce values are listed, the default of 0s will be used.

units_per_inch = n Helps to set sensitivity (on absolute type devices see next item below) &
map-inch size. dflt=1000. Not used for relative type devices (mice), see below.

coordinates = str str must be ’absolute’ or ’relative’, dflt=absolute. In general, mouse/trackball
devices are relative, and digitizers coordinates are absolute.

sign_type = aaa This indicates the sign type for binary formats: none (all +) (default for absolute
crds). 0negative (o=neg, used for some abs coords). 1negative (1=neg, used for some abs
coords). 2s-complement (default for relative coords).

Note: for binary formats the sign bit should be coded as highest bit number for a coordinate.

Note: for ascii formats, minus (-) sign is expected from the raw device to indicate a negative
number.

x_positive = dd This indicates the direction of x-positive coordinates. dd is a sting which may
have the value right or left. The default is right. All digitizers and mice have x-positive to the
right as of this writing.

397

27 Digitizer/Mouse/Trackball Files (.dgt)

y_positive = dd This indicates the direction of y-positive coordinates. dd is a string which may
have the value up or down. The default is up. The microsoft mouse is a digitizing device which
has y-positive coordinates to indicate a downward movement.

digcursor = fname Specifies the cursor file to be used while this digitizer is in use with LTPlus
program. The digcursor file defines which command each digitizer button generates. v.digit
does not need a cursor file, and ignores this line.

Note: The order of items is unimportant within the setup group.

27.2.1.3 Example of a Setup

setup

{

digname = Calcomp

description = Calcomp digitizer, ascii format 12

buttons = 16 # number of buttons on digitizer

buttonstart = 0 # number buttons start with

buttonoffset = 1 # offset to get buttons 1-15

baud = 9600

units_per_inch = 1000

}

27.2.2 Startrun, Startpoint, Startquery, Stop, Query

All of these allow the same operations, but are used at different times when communicating
with the digitizer/mouse. The START groupings are used to initialize the digitizer each time
communication is switched to that mode. The QUERY grouping is used when (and if) the
digitizer is queried/prompted to send data information. The STOP grouping is used to stop
digitizer output. All of these groupings are optional but at least one start group must be included
(to use the file with v.digit, the startquery group must be included). If the digitizer is configured
by default or switch settings to output data in the desired form of a certain mode, it is desirable
to include that start group anyway, with some innocuous action (such as sending a carriage
return) as the only action. If a start group is not included for a given mode, the module assumes
that the digitizer is unable to operate in that mode.

There may be no more than 40 operations within each start group or the stop group. There may
be no more than 10 operations in the query group.

398

27.2 Digitizer Configuration File Commands

27.2.2.1 Operations

send = aaaa This allows the sending of any ascii string to the digitizer (at the current baud rate
and parity).

read = n This tells the module to read n bytes from the digitizer before trying to read again
(gives up trying to read after 1 second). This is for reading digitizer prompts during start & stop
groups and is NOT used for querying the digitizer, unless a non-data string is to be read (like a
prompt character).

wait = n wait n seconds (decimal seconds allowed) before next

communication with the digitizer. Many computers are quicker than digitizers and need to allow
time for the digitizer to change baud rate before resuming communication. Maximum resolution
for wait is 0.001 second.

baud = n This allows changing of baud rate which was set during setup and is normally not used
otherwise. If only 1 baud rate is used, then it is put in the setup group only. This is the normal
case for most digitizers.

27.2.2.2 Notes

Control, extention, space, and all other characters can be specified in sent strings by using the
backslash followed by the ascii decimal value to be sent (up to 3 digits). Example: send=/027
(indicates the escape character).

The lines/commands communicating with the digitizer will be executed in the SAME ORDER
as they are in the start/stop/query grouping. Order is very important. Wait commands may be
necessary to give the digitizer time to execute the command sent. Wait commands may need to
be added/changed when the main modules is run on a faster cpu (in order to give the digitizer
enough time to keep up). A maximum of 40 non-comment lines can be in a start, stop, or query
group. All characters to be sent must be specified, including carriage return (- 013) and linefeed
(- 010).

Each time a QUERY group is executed, a 0.001 second wait is done automatically after all query
group commands. This allows time for the graphics input device to send a packet of information
before the serail line is read by the module.

v.digit requires that a STARTQUERY group exists.

27.2.2.3 Example of Start Groupings

startrun

399

27 Digitizer/Mouse/Trackball Files (.dgt)

{

send = - 027%R

baud = 2400

wait = 0.6

read = 3

wait = 0.1

send = - 027%S

}

startpoint

{

send = - 027%Ĺ12 - 013 # set output format to format 12

send = - 027%P - 013 # set to run mode

}

startquery

{

send = - 027%Ĺ12 - 013 # set output format to format 12

send = - 027%R - 013 # set to run mode

send = - 027%Q! - 013 # set prompt character to ’!’ and

put in prompt mode

}

27.2.2.4 Example of a Query Grouping

query

{

send = ! - 013 # send prompt

}

400

27.2 Digitizer Configuration File Commands

27.2.2.5 Example of a Stop Grouping

stop

{send = - 027%K

wait = 0.1

send = - 027%*

}

27.2.3 Format

This data is used each time a packet of information from the digitizer is interpreted. This group
must be one of 2 types; ascii or binary. The digitizer file MUST contain a format group (either
ascii or binary).

Ascii format groups have only 1 line:

ascii = format_string

Binary format groups have one line for each byte in the form:

byteN = format_string Where N is the byte number, (1 or greater) or byte No = format_string
(similar to above for OPTIONAL bytes). Note. The module assumes the optional bytes con-
taining ONLY button press information (no x or y information).

The legal format strings depend on the type (ascii or byteN).

27.2.3.1 ASCII format strings

ASCII format strings have these characteristics:

1. There are no imbedded blanks.

2. Legal characters are:

x denotes 1 character of the x-coordinate value (sign included).

y denotes 1 character of the y-coordinate value (sign included).

b denotes 1 character of button information.

p denotes 1 character of button press information (up or down).

, denotes the comma character (used to sync data if present).

401

27 Digitizer/Mouse/Trackball Files (.dgt)

c denotes a carriage return (optionally specified)

l denotes a line-feed (optionally specified)

? denotes any other character of information (including blanks).

27.2.3.2 Notes

The sign (+ or -) should be coded as part of the x or y value. The specifications of the carriage-
return and linefeed are totally optional. They will be ignored whether they are specified or
not. Their only use is to separate one ascii grouping of incoming data from another. Any
combination of carriage-returns and/or linefeeds will serve this purpose in any case os ascii
format use.

27.2.3.3 Example of ASCII Format Grouping

format

{

ascii =?xxxxx,yyyyy,??bcl

}

27.2.3.4 Binary Format String

Binary format strings have these characteristics.

0. byteNo form is used only for bytes which are sometimes, but not always sent by the digitizing
devices. These byte(s) must be at the end of the grouping/packet. For example, the Logitech
Mouseman sends an optional 4 1�2 bytes only when the middle button is pressed. Very few
digitizing devices use optional bytes.

1. 8 bits are specified with at least 1 blank between bit groupings, even f fewer bits are used.
Fill the left (high) bits with ? if necessary.

2. Legal characters are:

xN denotes bit N of the x-coordinate value (low-order bit is 0, maximum bit allowed is 30)
(include sign bit as highest bit used)

yN denotes bit N of the y-coordinate value (low-order bit is 0, maximum bit allowed is 30)
(include sign bit as highest bit used)

402

27.2 Digitizer Configuration File Commands

bN denotes bit N of button press value (low-order bit is 0, maximum bit allowed is 7).

p denotes button press bit (will be 1 if button is pressed, 0 otherwise).

0 denotes bit is always zero (used for sync bit).

1 denotes bit is always one (used for sync bit).

? denoted any other information (bit not used).

27.2.3.5 Notes

There cannot be more than 100 lines of byten = in the format group.

Sign bits (if any) should be coded as the highest bit number for a given coordinate. Parity bits
(if in the lowest 8 bits), and fill bits (if fewer than 8 bits used) should be coded as ?. No bits
above the lowest 8 should be specified ar all (sometimes there is a 9 1�2 parity bit).

0s and 1s are used for syncing the input, and should all occur in the same bit column.

27.2.3.6 Examples of a Binary Format Grouping

Example with odd or even parity and 7 data bits.

format

{

byte1 = ? 1 ? ? ? ? ? ?

byte2 = ? 0 ? b4 b3 b2 b1 b0

byte3 = ? 0 x5 x4 x3 x2 x2 x0

byte4 = ? 0 x11 x10 x9 x8 x7 x6

byte5 = ? 0 x16 x17 x15 x14 x13 x12

byte6 = ? 0 y5 y4 y3 y2 y1 y0

byte7 = ? 0 y11 y10 y9 y8 y7 y6

byte8 = ? 0 y16 y17 y15 y14 y13 y12

}

403

27 Digitizer/Mouse/Trackball Files (.dgt)

or

Example with 8 data bits (with or without parity.)

format

{

byte1 = 1 p b3 b2 b1 b0 x15 x14

byte2 = 0 x13 x12 x11 x10 x9 x8 x7

byte3 = 0 x6 x5 x4 x3 x2 x1 x0

byte4 = 0 ? ? ? x16 y16 y15 y14

byte5 = 0 y13 y12 y11 y10 y9 y8 y7

byte6 = 0 y6 y5 y4 y3 y2 y1 y0

}

27.3 Examples of Complete Files

The following are complete examples of digitizer files.

27.3.1 Example 1

setup

{

digname = Calcomp

description = Calcomp digitizer, ascii format 5

buttonoffset = 1

buttons = 16

buttonstart = 0

baud = 9600

units_per_inch = 1000

}

404

27.3 Examples of Complete Files

startrun

{

send = - 027%Ĺ5 - 013 # set to format 5

send = - 027%R - 013

}

startpoint

{

send = - 027%Ĺ5 - 013 # set to format 5

send = - 027%P - 013

}

startquery

{

send = - 027%Ĺ5 - 013 # set to format 5

send = - 027%R - 013

send = - 027%Q! - 013

}

query

{

send = ! - 013

}

stop

{

send = - 027%H - 013

}

format

{

ascii = xxxxx,yyyyy,??b

405

27 Digitizer/Mouse/Trackball Files (.dgt)

}

27.3.2 Example 2

setup

{

digname = Altek

description = altek digitizer, model AC30, binary output format 8

buttonoffset = 1 # button output starts at 0, we want 1

buttonstart = 0 # first button is numbered 0

buttons = 16 # number of buttons is 16

baud = 9600

parity = none

stop_bits = 1

sign_type = none

units_per_inch = 1000

coordinates = absolute

sign_type = none

}

startrun

{

send=S2 - 13 # set to run mode

send=F8 - 13 # set output format to 8

send=R6 - 13 # enter rate mode 6

}

startpoint

{

send = P - 013 # set to point mode

406

27.3 Examples of Complete Files

send = F8 - 013 # set output format to 8

}

startquery

{

send = S2 - 013 # altek has no specific prompt mode, but may be

queried at any time, so set to run mode

send = F8 - 013 # set output format to 8

}

query

{

send = V - 013 # request data

}

stop

{

send = - 027 - 013 # reset

}

format

{

byte1 = 1 p b3 b2 b1 b0 x15 x14

byte2 = 0 x13 x12 x11 x10 x9 x8 x7

byte3 = 0 x6 x5 x4 x3 x2 x1 x0

byte4 = 0 ? ? ? x16 y16 y15 y14

byte5 = 0 y13 y12 y11 y10 y9 y8 y7

byte6 = 0 y6 y5 y4 y3 y2 y1 y0

}

407

27 Digitizer/Mouse/Trackball Files (.dgt)

27.4 Digitizer File Naming Conventions

The naming conventions for digitizers driver files is:

manufacturer name or abbreviation + model number of digitizer + output format the digitizer is
using + _ + number of keys on puck

For example, an Altek model 30 digitizer using format 8 with a 16 button puck would be:

al + 30 + f8 + _ + 16

Put it together and you have –> al30f8_16

You can optionally stick a .dgt extention on the end of the file name, e.g., al30f8_16.dgt This
is by no means required, but its a clear indicator as to the use of the digitizer file which helps
everyone in the long run. Test your files thoroughly. When it works, tell other users about your
file. This helps everyone by reducing duplication of effort.

408

28 Writing a Graphics Driver

28.1 Introduction

GRASS application modules which use graphics are written with the Raster Graphics Library
. At compilation time, no actual graphics device driver code is loaded. It is only at run-time
that the graphics requests make their way to device-specific code. At run-time, an application
module connects with a running graphics device driver, typically via system level first-in-first-
out (fifo) files. Each GRASS site may have one or more of these modules to choose from. They
are managed by the module d.mon.

Porting GRASS graphics modules from device to device simply requires the creation of a new
graphics driver module. Once completed and working, all GRASS graphics modules will work
exactly as they were designed without modification (or recompilation). This section is con-
cerned with the creation of a new graphics driver.

28.2 Basics

The various drivers have source code contained under the directory $GISBASE/src/D/devices.1

This directory contains a separate directory for each driver, e.g., XDRIVER, SUNVIEW and
MASS. In addition, the directory lib contains files of code which are shared by the drivers. The
directory GENERIC contains the beginnings of the required subroutines and sample Gmakefile.

A new driver must provide code for this basic set of routines. Once working, the programmer
can choose to rewrite some of the generic code to increase the performance of the new driver.
Presented first below are the required routines. Suggested options for driver enhancement are
then described.

28.3 Basic Routines

Described here are the basic routines required for constructing a new GRASS graphics driver.
These routines are all found in the GENERIC directory. It is suggested that the programmer
create a new directory (e.g., MYDRIVER) into which all of the GENERIC files are copied (i.e.,
cp GENERIC/* MYDRIVER).

1$GISBASE is the directory where GRASS is installed. See 10.1 UNIX Environment (p. 65) for details.

409

28 Writing a Graphics Driver

28.3.1 Open/Close Device

Graph_Set () initialize graphics

This routine is called at the start-up of a driver. Any code necessary to establish the desired
graphics environment is included here. Often this means clearing the graphics screen, estab-
lishing connection with a mouse or pointer, setting drawing parameters, and establishing the
dimensions of the drawing screen. In addition, the global integer variables SCREEN_LEFT,
SCREEN_RIGHT, SCREEN_TOP, SCREEN_BOTTOM, and NCOLORS must be set. Note
that the GRASS software presumes the origin to be in the upper left-hand corner of the screen,
meaning:

SCREEN_LEFT < SCREEN_RIGHT

SCREEN_TOP < SCREEN_BOTTOM

You may need to flip the coordinate system in your device-specific code to support a device
which uses the lower left corner as the origin. These values must map precisely to the screen
rows and columns. For example, if the device provides graphics access to pixel columns 2
through 1023, then these values are assigned to SCREEN_LEFT and SCREEN_RIGHT, re-
spectively.

NCOLORS is set to the total number of colors available on the device. This most certainly
needs to be more than 100 (or so).

Graph_Close () shut down device

Close down the graphics processing. This gets called only at driver termination time.

28.3.2 Return Edge and Color Values

The four raster edge values set in the Graph_Set() routine above are retrieved with the following
routines.

Screen_left (index) return left pixel column value

Screen_rite (index) return right pixel column value

Screen_top (index) return top pixel row value

Screen_bot (index) return bottom pixel row value

int *index ;

The requested pixel value is returned in index.

410

28.3 Basic Routines

These next two routines return the number of colors. There is no good reason for both routines
to exist; chalk it up to the power of anachronism.

Get_num_colors (index) return number of colors

int *index ;

The number of colors is returned in index.

get_num_colors () return number of colors

The number of colors is returned directly.

28.3.3 Drawing Routines

The lowest level drawing routines are draw_line(), which draws a line between two screen
coordinates, and Polygon_abs() which fills a polygon.

draw_line (x1,y1,x2,y2) draw a line

int x1, y1, x2, y2 ;

This routine will draw a line in the current color from x1,y1 to x2,y2.

Polygon_abs (x,y,n) draw filled polygon

int *x, *y ;

int n ;

Using the n screen coordinate pairs represented by the values in the x and y arrays, this routine
draws a polygon filled with the currently selected color.

28.3.4 Colors

This first routine identifies whether the device allows the run-time setting of device color look-
up tables. If it can (and it should), the next two routines set and select colors.

Can_do ()signals run-time color look-up table access

If color look-up table modification is allowed, then this routine must return 1; otherwise it
returns 0. If your device has fixed colors, you must modify the routines in the lib directory
which set and select colors. Most devices now allow the setting of the color look-up table.

reset_color (number, red, green, blue) set a color

it number

411

28 Writing a Graphics Driver

unsigned char red, green, blue ;

The system’s color represented by number is set using the color component intensities found
in the red, green, and blue variables. A value of 0 represents 0% intensity; a value of 255
represents 100% intensity. color (number) select a color int number ;

The current color is set to number. This number points to the color combination defined in the
last call to reset_color() that referenced this number.

28.3.5 Mouse Input

The user provides input through the three following routines.

Get_location_with_box (cx,cy,wx,wy,button) get location with rubber box

int cx, cy ;

int *wx, *wy ;

int *button ;

Using mouse device, get a new screen coordinate and button number. Button numbers must be
the following values which correspond to the following software meanings:

1 - left button

2 - middle button

3 - right button

A rubber-band box is used. One corner is fixed at the cx,cy coordinate. The opposite coordinate
starts out at wx,wy and then tracks the mouse. Upon button depression, the current coordinate
is returned in wx,wy and the button pressed is returned in button.

Get_location_with_line (cx,cy,wx,wy,button) get location with rubber line

int cx, cy ;

int *wx, *wy ;

int *button ;

Using mouse device, get a new screen coordinate and button number. Button numbers must be
the following values which correspond to the following software meanings:

1 - left button

2 - middle button

412

28.3 Basic Routines

3 - right button

A rubber-band line is used. One end is fixed at the cx,cy coordinate. The opposite coordinate
starts out at wx,wy and then tracks the mouse. Upon button depression, the current coordinate
is returned in wx,wy and the button pressed is returned in button.

Get_location_with_pointer (wx,wy,button) get location with pointer

int *wx, *wy ;

int *button ;

Using mouse device, get a new screen coordinate and button number. Button numbers must be
the following values which correspond to the following software meanings:

1 - left button

2 - middle button

3 - right button

A cursor is used which starts out at wx,wy and then tracks the mouse. Upon button depression,
the current coordinate is returned in wx,wy and the button pressed is returned in button.

28.3.6 Panels

The following routines cooperate to save and restore sections of the display screen.

Panel_save (name, top, bottom, left, right) save a panel

char *name ;

int top, bottom, left, right ;

The bit display between the rows and cols represented by top, bottom, left, and right are saved.
The string pointed to by name is a file name which may be used to save the image.

Panel_restore (name) restore a panel

char *name ;

Place a panel saved in name (which is often a file) back on the screen as it was when it was
saved. The memory or file associated with name is removed.

413

28 Writing a Graphics Driver

28.4 Optional Routines

All of the above must be created for any new driver. The GRASS Rasterlib, which provides the
application module routines which are passed to the driver via the fifo files, contains many more
graphics options. There are actually about 44. Above, we have described 19 routines, some of
which do not have a counterpart in the Rasterlib. For GRASS 3.0, the basic driver library was
expanded to accommodate all of the graphics subroutines which could be accomplished at a
device-dependent level using the 19 routines described above. This makes driver writing quite
easy and straightforward. A price that is paid is that the resulting driver is probably slower and
less efficient than it might be if more of the routines were written in a device-dependent way.
This section presents a few of the primary target routines that you would most likely consider
rewriting for a new driver.

It is suggested that the driver writer copy entire files from the lib area that contain code which
shall be replaced. In the loading of libraries during the compilation process, the entire file
containing an as yet undefined routine will be loaded. For example, say a file ”ab.c” contains
subroutines a() and b(). Even if the programmer has provided subroutine a() elsewhere, at
load time, the entire file ”ab.c” will be loaded to get subroutine b(). The compiler will likely
complain about a multiply defined external. To avoid this situation, do not break routines out of
their files for modification; modify the entire file.

Raster_int (n, nrows, array, withzeros, type) raster display

int n ;

int nrows ;

unsigned int *array ;

int withzeros ;

int type ;

This is the basic routine for rendering raster images on the screen. Application modules con-
struct images row by row, sending the completed rasters to the device driver. The default
Raster_int() in lib draws the raster through repetitive calls to color() and draw_line(). Of-
ten a 20x increase in rendering speed is accomplished through low-level raster calls. The raster
is found in the array pointer. It contains color information for n colors and should be repeated
for nrows rows. Each successive row falls under the previous row. (Depending on the com-
plexity of the raster and the number of rows, it is sometimes advantageous to render the raster
through low-level box commands.) The withzeros flag indicates whether the zero values should
be treated as color 0 (withzeros= =1) or as invisible (withzeros= =0). Finally, type indicates that
the raster values are already indexed to the hardware color look-up table (type= =0), or that the
raster values are indexed to GRASS colors (which must be translated through a look-up table)
to hardware look-up table colors (type= =1).

Further details on this routine and related routines Raster_chr(), and Raster_def() are, of
course, found in the definitive documentation: the source code.

414

29 Writing a Paint Driver

29.1 Introduction

The paint system, which produces hardcopy maps for GRASS, is able to support many different
types of color printers. This is achieved by placing all device-dependent code in a separate mod-
ule called a device driver. Application programs, written using a library of device-independent
routines, communicate with the device driver using the UNIX pipe mechanism. The device
driver translates the device-independent requests into graphics for the device.

A paint driver has two parts: a shell script and an executable module. The executable mod-
ule is responsible for translating device-independent requests into graphics on the printer. The
shell script is responsible for setting some UNIX environment variables that are required by
the interface, and then running the executable module. The user first selects a printer using the
p.select module. The selected printer is stored in the GRASS environment variable PAINTER.1

Then the user runs one of the application programs. The principal paint applications that pro-
duce color output are p.map which generates scaled maps, and p.chart which produces a chart
of printer colors. The application looks up the PAINTER and runs the related shell script as a
child process. The shell script sets the required environment variables and runs the executable.
The application then communicates with the driver via pipes.

29.2 Creating a Source Directory for the Driver Code

The source code for paint drivers lives in

$GISBASE/src/paint/Drivers 2

Each driver has its own subdirectory containing the source code for the executable program, the
shell script, and a Gmakefile with rules that tell the GRASS gmake command how to compile
the driver.3

1See 10.2 GRASS Environment (p. 66).
2$GISBASE is the directory where GRASS is installed. See 10.1 UNIX Environment (p. 65) for details.
3See 11 Compiling and Installing GRASS Modules (p. 69) for details on the GRASS compilation process.

415

29 Writing a Paint Driver

29.3 The Paint Driver Executable Program

A paint device driver module consists of a set of routines (defined below) that perform the
device-dependent functions. These routines must be written for each device to be supported.

29.3.1 Printer I/O Routines

The following routines open the printer port and perform low-level i/o to the printer.

Popen (port) open the printer port

char *port;

Open the printer port for output. If the port is a tty, perform any necessary tty settings (baud
rate, xon/xoff, etc.) required. No data should be written to the port.

The port will be the value of the UNIX environment variable MAPLP,4 if set, and NULL
otherwise. It is recommended that device drivers use the port that is passed to them so that
paint has a consistent logic.

The baud rate should not be hardcoded into Popen (). It should be set in the driver shell as
the UNIX environment variable BAUD. Popen () should determine the baud rate from this
environment variable.

Pout (buf, n) write to printer unsigned

char *buf;

int n;

Output the data in buf. The number of bytes to send is n. This is a low-level request. No
processing of the data is to be done. Output is simply to be sent as is to the printer.

It is not required that data passed to this routine go immediately to the printer. This routine can
buffer the output, if desired.

It is recommended that this routine be used to send all output to the printer.

Poutc (c) write a character to printer

unsigned char c;

Sends the character c to the printer. This routine can be implemented as follows:

Poutcl’ unsigned char c;
4This, and other, environment variables are set in the driver shell script which is described in 29.4 The Device

Driver Shell Script (p. 421).

416

29.3 The Paint Driver Executable Program

{

Pout(c, 1);

}

Pouts (s) write a string to printer unsigned

char *s;

Sends the character string s to the printer. This routine can be implemented as follows:

Pouts(s) unsigned char *s;

{

Pout(s, strlen(s));

}

Pflush () flush pending output

Flush any pending output to the printer. Does not close the port.

Pclose ()close the printer port

Flushes any pending output to the printer and closes the port.

Note. The above routines are usually not device dependent. In most cases the printer is con-
nected either to a serial tty port or to a parallel port. The paint driver library5 contains versions
of these routines which can be used for output to either serial or parallel ports. Exceptions to
this are the preview driver, which sends its output to the graphics monitor, and the NULL driver
which sends debug output to stderr.

29.3.2 Initialization

The following routine will be called after Popen to initialize the printer:

Pinit ()initialize the printer

Initializes the printer. Sends whatever codes are necessary to get the printer ready for printing.

5See 29.6 Paint Driver Library (p. 424).

417

29 Writing a Paint Driver

29.3.3 Alpha-Numeric Mode

The following two routines allow the printer to be used for normal text printing:

Palpha ()place printer in text mode

Places the printer in alpha-numeric mode. In this mode, the driver should only honor Ptext
calls.

Ptext (text) print text

char *text;

Prints the text string on the printer.

The text will not normally have nonprinting characters (i.e., control codes, tabs, linefeeds,
returns, etc.) in it. Such characters in the text should be ignored or suppressed if they do occur.
If the printer requires any linefeeds or carriage returns, this routine should supply them.

Note. If the printer does not have support for text in the hardware, it must be simulated. The
shinko635 printer does not have text, and the code from that driver can be used.

29.3.4 Graphics Mode

The following routines perform raster color graphics:

Praster ()place printer in graphics mode

Places the printer in raster graphics mode. This implies that subsequent requests will be related
to generating color images on the printer.

Pnpixels(nrows, ncols) report printer dimensions

int *nrows;

int *ncols;

The variable ncols should be set to the number of pixels across the printer page. If the driver
is combining physical pixels into larger groupings (e.g., 2x2 pixels) to create more colors, then
ncols should be set to the number of these larger pixels.

The variable nrows should be set to 0. A non-zero value means that the output media does
not support arbitrarily long output and p.map will scale the output to fit into a window nrows
x ncols. The only driver which should set this to a non-zero value is the preview driver, which
sends its output to the graphics screen.

Ppictsize (nrows, ncols) defined picture size

418

29.3 The Paint Driver Executable Program

int nrows;

int ncols;

Prepare the printer for a picture with nrows and ncols. The number of columns ncols will not
exceed the number of columns returned by Pnpixels.6

There is no limit on the number of rows nrows that will be requested. p.map assumes that
the printer paper is essentially infinite in length. Some printers (e.g., thermal printers like the
shinko635) only allow a limited number of rows, after which they leave a gap before the output
can begin again. It is up to the driver to handle this. The output will simply have gaps in it. The
user will cut out the gaps and tape the pieces back together.

Pdata (buf, n) send raster data to printer unsigned

char *buf;

int n;

Output the raster data in buf. The number of bytes to send is n, which will be the ncols as
specified in the previous call to Ppictsize. The values in buf will be printer color numbers, one
per pixel.

Note that the color numbers in buf have full color information encoded into them (i.e., red,
green, and blue). Some printers (e.g., inkjet) can output all the colors on a row by row basis.
Others (e.g., thermal) must lay down a full page of one color, then repeat with another color,
etc. Drivers for these printers will have to capture the raster data into temporary files and then
make three passes through the captured data, one for each color.

Prle(buf, n) send rle raster data to printer

unsigned char *buf;

int n;

Output the run-length encoded raster data in buf. The data is in pairs: color, count , where color
is the raster color to be sent, and count is the number of times the color is to be repeated (with
a count of 0 meaning 256). The number of pairs is n. Of course, all the counts should add up to
ncols as specified in the previous call to Ppictsize. If the printer can handle run-length encoded
data, then the data can be sent either directly or with minimal manipulation. Otherwise, it must
be converted into standard raster form before sending it to the printer.

6The programmer should, of course, code defensively. If the number of columns is too large, the driver should exit
with an error message.

419

29 Writing a Paint Driver

29.3.5 Color Information

The paint system expects that the printer has a predefined color table. No attempt is made
by paint to download a specific color table. Rather, the driver is queried about its available
colors. The following routines return information about the colors available on the printer.
These routines may be called even if Popen has not been called.

Pncolors ()number of printer colors

This routine returns the number of colors available. Currently, this routine must not return a
number larger than 255. If the printer is able to generate more than 255 colors, the driver must
find a way to select a subset of these colors. Also, the paint system works well with printers
that have around 125 different colors. If the printer only has three colors (e.g., cyan, yellow,
and magenta), then 125 colors can be created using a 2x2 pixel.7

Pcolorlevels (red, green, blue) get color levels

int *red, *green, *blue;

Returns the number of colors levels. This means, for example, if the printer has 125 colors, the
color level would be 5 for each color; if the printer has 216 colors, the color levels would be 6
for each color, etc.

Pcolornum(red, green, blue) get color number

float red, green, blue;

This routine returns the color number for the printer which most closely approximates the color
specified by the red, green, and blue intensities. These intensities will be in the range 0.0 to
1.0. 8

The printer color numbers must be in the range 0 to n -1, where n is the number of colors
returned by Pncolors.

For printers that have cyan, yellow, and magenta instead of red, green and blue, the conversion
formulas are:

cyan = 1.0 - red

yellow = 1.0 - blue

magenta = 1.0 - green

Pcolorvalue (n, red, green, blue) get color intensities

7See 29.8 Creating 125 Colors From 3 Colors (p. 426).
8Just to be safe, those above 1.0 can be changed to 1.0, and those below 0.0 can be changed to 0.0.

420

29.4 The Device Driver Shell Script

int n;

float *red, *green, *blue;

This routine computes the red, green, and blue intensities for the printer color number n. These
intensities must be in the range 0.0 to 1.0. If n is not a valid color number, set the intensities to
1.0 (white).

29.4 The Device Driver Shell Script

The driver shell is a small shell script which sets some environment variables, and then executes
the driver. The following variables must be set :9

MAPLP

This variable should be set to the tty port that the printer is on. The tty named by this variable
is passed to Popen. Only in very special cases can drivers justify either ignoring this value or
allowing it not to be set.

The drivers distributed by GRASS Development Team have MAPLP set to /dev/${PAINTER}.
Thus each driver must have a corresponding /dev port. These are normally created as links to
real /dev/tty ports.

BAUD

This specifies the baud rate of the output tty port. This variable is only needed if the output port
is a serial RS-232 tty port. The value of the variable should be an integer (e.g., 1200, 9600,
etc.), and should be used by Popen to set the baud rate of the tty port.

HRES

This specifies the horizontal resolution of the printer in pixels per inch. This is a positive floating
point number.

VRES

This specifies the vertical resolution of the printer in pixels per inch. This is a positive floating
point number.

NCHARS

This specifies the maximum number of characters that can be printed on one line in alpha-
numeric mode.

9The driver shell script may set any other variables that the programmer has determined the driver needs.

421

29 Writing a Paint Driver

Note. The application modules do not try to deduce the width in pixels of text characters.

TEXTSCALE

This positive floating point number is used by p.map to set the size of the numbers placed on
the grid when maps are drawn. The normal value is 1.0, but if the numbers should appear too
large, a smaller value (0.75) will shrink these numbers. If they appear too small, a larger value
(1.25) will enlarge them. This value must be determined by trial and error.

The next five variables are used to control the color boxes drawn in the map legend for p.map
as well as the boxes for the printer color chart created by p.chart. They hav e to be determined
by trial and error in order to get the numbering to appear under the correct box.10

NBLOCKS

This positive integer specifies the maximum number of blocks that are to be drawn per line.

BLOCKSIZE

This positive integer specifies the number of pixels across the top of an individual box.

BLOCKSPACE

This positive integer specifies the number of pixels between boxes.

TEXTSPACE

This positive integer specifies the number of space characters to output after each number
(printed under the boxes).

TEXTFUDGE

This nonnegative integer provides a way of inserting extra pixels between every other box, or
every third box, etc. On some printers, this will not be necessary, in which case TEXTFUDGE
should be set to 0. If you find that the numbers under the boxes are drifting away from the
intended box, the solution may be to move every other box, or every third box over 1 pixel. For
example, to move every other box, set TEXTFUDGE to 2.

The following is a sample paint driver shell script:

: ${PAINTER?} ${PAINT_DRIVER?}

MAPLP=/dev/$PAINTER
10 Apologies are offered for this admittedly awkward design.

422

29.5 Programming Considerations

BAUD=9600

HRES=85.8

VRES=87.0

NCHARS=132

TEXTSCALE=1.0

NBLOCKS=25

BLOCKSIZE=23

BLOCKSPACE=13

TEXTSPACE=1

TEXTFUDGE=3

export MAPLP BAUD HRES VRES NCHARS

export TEXTSCALE TEXTSPACE TEXTFUDGE

export NBLOCKS BLOCKSIZE BLOCKSPACE

exec $PAINT_DRIVER

29.5 Programming Considerations

The paint driver uses its standard input and standard output to communicate with the paint
application module. It is very important that neither the driver shell nor the driver module write
to stdout or read from stdin.

Diagnostics, error messages, etc., should be written to stderr. There is an error routine which
driver modules can use for fatal error messages. It is defined as follows:

error (message, perror)

char *message;

int perror;

This routine prints the message on stderr. If perror is true (i.e., non-zero), the UNIX routine
perror () will be also called to print a system error message. Finally, exit () is called to
terminate the driver.

423

29 Writing a Paint Driver

29.6 Paint Driver Library

The paint system comes with some code that has already been written. This code is in object
files under the paint driver library directory.11 These object files are:

main.o

This file contains the main () routine which must be loaded by every driver, since it contains
the code that interfaces with the application programs.

io.o

This file contains versions of Popen, Pout, Poutc, Pout, Pflush, and Pclos which can be used
with printers that are connected to serial or parallel ports. These routines handle the tricky tty
interfaces for both System V and Berkeley UNIX, allowing full 8-bit data output to the printer,
with xon/xoff control enabled, as well as baud rate selection.

colors125.o

This file contains versions of Pncolors, Pcolorlevels, Pcolornum, and Pcolorvalue for the 125
color logic described in 24.8 Creating 125 Colors From 3 Colors.

29.7 Compiling the Driver

Paint drivers are compiled using the GRASS gmake utility which requires a Gmakefile contain-
ing compilation rules.12 The following is a sample Gmakefile:

NAME = sample

DRIVERLIB = $(SRC)/paint/Interface/driverlib

INTERFACE = $(DRIVERLIB)/main.o -
$(DRIVERLIB)/io.o -
$(DRIVERLIB)/colors125.o

DRIVER_SHELL = $(ETC)/paint/driver.sh/$(NAME)

DRIVER_EXEC = $(ETC)/paint/driver/$(NAME)

OBJ = alpha.o text.o raster.o npixels.o -
11See 29.7 Compiling the Driver (p. 424) for an example of how to load this library code.
12 See 11 Compiling and Installing GRASS Modules (p. 69) for details on the GRASS compilation process.

424

29.7 Compiling the Driver

pictsize.o data.o rle.o

all: $(DRIVER_EXEC) $(DRIVER_SHELL)

$(DRIVER_EXEC): $(OBJ) $(LOCKLIB)

$(CC) $(LDFLAGS) $(INTERFACE) $(OBJ) $(LOCKLIB) -o $@

$(DRIVER_SHELL): DRIVER.sh

rm -f $@

cp $? $@

chmod +x $@

$(OBJ): P.h

$(LOCKLIB): # in case library changes

There are some features about this Gmakefile that should be noted:

printer name (NAME)

The printer name sample is assigned to the NAME variable, which is then used everywhere else.

paint driver library (DRIVERLIB)

This driver loads code from the common paint driver library.13 It loads main.o containing the
main () routine for the driver. All drivers must load main.o .It loads io.o which contains ver-
sions of Popen, Pout, Poute, Pouts, Pflush, and Pclose for serial and parallel ports. It also loads
colors125.o which contains versions of Pncolors, Pcolorlevels, Pcolornum, and Pcolorvalue
for 125 colors.

lock library (LOCKLIB)

The driver loads the lock library. This is a GRASS library which must be loaded if the Popen
from the driver library is used.

homes for driver shell and executable

The driver executable is compiled into the driver directory, and the driver shell is copied into
the driver.sh directory. This means that the driver executable is placed in

$GISBASE/etc/paint/driver14

13See also 29.6 Paint Driver Library (p. 424).
14$GISBASE is the directory where GRASS is installed. See 10.1 UNIX Environment (p. 65) for details.

425

29 Writing a Paint Driver

and the driver shell in

$GISBASE/etc/paint/driver.sh.

29.8 Creating 125 Colors From 3 Colors

The paint system expects that the printer will have a reasonably large number of colors. Some
printers support a large color table in the hardware. But others only support three primary
colors: red, green, and blue (or cyan, yellow, and magenta). If the printer only has three colors,
the driver must simulate more.

If the printer pixels are grouped into 2x2 combinations of pixels, then 125 colors can be simu-
lated. For example, a color with 20% red, 100% green, and 0% blue would have one of the four
pixels painted red, all four pixels painted green, and none of the pixels painted blue.

The following code converts a color intensity in the range 0.0 to 1.0 into a number from 0-4
(i.e., the number of pixels to ”turn on” for that color):

npixels = (intensity * 5);

if (npixels > 4)

npixels = 4 ;

This logic will agree with the 125 color logic used by the paint driver library15 routines Pncol-
ors, Pcolorlevels, Pcolornum, and Pcolorvalue, provided that the color numbers are assigned
as follows:

color_number = red_pixels * 25 + green_pixels * 5 + blue_pixels ;

15See 29.6 Paint Driver Library (p. 424).

426

30 Writing GRASS Shell Scripts

This section describes some of the things a programmer should consider when writing a shell
script that will become a GRASS command.

30.1 Use the Bourne Shell

The Bourne Shell (/bin/sh) is the original UNIX command interpreter. It is available on most
(if not all) versions of UNIX. Other command interpreters, such as the C-Shell (/bin/csh), are
not as widely available. Therefore, programmers are strongly encouraged to write Bourne Shell
scripts for maximum portability.

The discussion that follows is for the Bourne Shell only. It is also assumed that the reader knows
(or can learn) how to write Bourne Shell scripts. This chapter is intended to provide guidelines
for making them work properly as GRASS commands.

30.2 How a Script Should Start

There are some things that should be done at the beginning of any GRASS shell script:

(1) Verify that the user is running GRASS, and

(2) Cast the GRASS environment variables into the UNIX environment,1 and verify that the
variables needed by the shell script are set.

#!/bin/sh

if test "$GISRC" = ""
then

echo "Sorry, you are not running GRASS" >\&2
exit 1

fi

eval ‘g.gisenv‘

: ${GISBASE?} ${GISDBASE?} ${LOCATION_NAME?} ${MASPET?}

1See 10 Environment Variables (p. 65)

427

30 Writing GRASS Shell Scripts

Note the use of the : command. This command simply evaluates its arguments. The syntax
${GISBASE?} means that if GISBASE is not set, issue an error message to standard error and
exit the shell script.

30.3 g.ask

The GRASS command g.ask emulates the prompting found in all other GRASS commands,
and should be used in shell scripts to ask the user for files from the GRASS database. The
user’s response can be cast into shell variables. The following example asks the user to select
an existing raster file:

g.ask type=old prompt="Select a raster file" element=cell desc=raster unixfile=/tmp/$$
. /tmp/$$

rm -f /tmp/$$

if test "$name" = ""
then

exit 0
fi

The g.ask manual entry in the GRASS User’s Reference Manual describes this command in
detail. Here, the reader should note the following:

(1) The temporary file used to hold the user’s response is /tmp/$$. The Bourne Shell will
substitute its process id for the $$ thus creating a unique file name;

(2) The next line, which begins with a dot, sources the commands contained in the temporary
file. These commands are:

name=something
mapset=something
file=something

Therefore, the variables $name, $mapset, and $file will contain the name, mapset and full UNIX
file name of the raster file selected by the user;

(3) The temporary file is removed; and

(4) If $name is empty, this means that the user changed his or her mind and did not select any
raster file.2 In this case, something reasonable is done, like exiting.

2The other variables will be empty as well.

428

30.4 g.findfile

30.4 g.findfile

The g.findfile command can be used to locate GRASS files that were specified as arguments
to the shell script (instead of prompted for with g.ask). Assuming that the variable $request
contains the name of a raster file, the following checks to see if the file exists. If it does, the
variables $name, $mapset and $file will be set to the name, mapset and full UNIX file name for
the raster file:

eval ‘g.findfile element=cell file="$request"‘

if test "$mapset" = ""
then

echo ERROR: raster file "$request" not found >&2
exit 1

fi

Note. The programmer should use quotes with $request, since it may contain spaces. (quotes
will preserve the full request). If found, g.findfile outputs $name as the name part and $mapset
as the mapset part. See the g.findfile manual entry in the GRASS User’s Reference Manual for
more details.

429

30 Writing GRASS Shell Scripts

430

31 GRASS CVS repository

The Concurrent Versions System (CVS) provides network-transparent source control for groups
of developers. They can work independently and "feed the system" (the source code repository)
remotely through internet - day and night from all over the world.

Even if you do not contribute to the code development, the CVS allows to follow development
progress easily. After downloading the full GRASS CVS tree, just the future changes will be
sent to you by using the CVS software. This method reduces further downloads for updating
your local GRASS sources extremely.

Further features of CVS:

� maintains a history of all changes and keeps copies of all changes (a sort of "change
recorder")

� provides tools to support process control and change control

� provides reliable access to its directory trees from remote hosts using Internet protocols

� supports parallel development allowing more than one developer to work on the same
sources at the same time

The CVS prevents us and you from further GRASS version confusion. As every change is under
control of the CVS system the current state as well as old versions can be accessed. This is very
important for bug-tracking (finding bugs introduced by changes).

If you download the GRASS sources from the CVS system, you get the latest version existing!
Of course, you can also download a previous version, if you prefer. Once downloaded the
entire GRASS CVS tree including the CVS-internal subdirectories you can follow the ongoing
development easily. The "update" function downloads only the changes not yet included in
your system. CVS compares the GRASS source code version in the CVS-server with your local
version.

As GRASS is a rather big package this might be one reason for you to use CVS. If you are not
yet convinced please read the texts below. CVS is distributed here and usually shipped within
several Linux distributions. It is available for rather every operating system.

431

31 GRASS CVS repository

The GRASS-CVS service is hosted at Intevation GmbH, Germany.1 There is additionally a
"web-cvs" interface which allows to browse the source code. The status of each file (its change
history) is written there, you can also download individual files.

1http://freegis.org/grass/

432

http://freegis.org/grass/

A Appendix

A.1 Appendix A: Annotated Gmakefile Predefined Variables

The predefined Gmakefile variables are defined in the files head.in and make.mid. These files
can be found under $GISBASE/src/CMD.1

Note: Some of the variables shown here are described in more detail in 11 Compiling and
Installing GRASS Modules (p. 69)

head
The head file contains machine dependent and installation dependent information. It is created
by system personnel when GRASS is installed on a system prior to compilation. This file varies
from system to system. The name of this file may also vary, depending on the machine or
architecture for which GRASS is compiled.
Here is a sample head.i686-pc-linux-gnu (Linux-PC architecture) file:

Variable Value Description

CC = gcc C-Compiler
FC = g77 Fortran-Compiler
LEX = flex lexical analyser
YACC = yacc lexical parser
ARCH = i686-pc-linux-gnu Architecture to compile on
MAKE = make make command

GISBASE = /usr/local/grass-5.0b Location of GRASS program
UNIX_BIN = /usr/local/bin GRASS startup script location

DEFAULT_DATABASE = Location of default database
DEFAULT_LOCATION = Name of defaut database

COMPILE_FLAGS = -O2 Compiler flags
LDFLAGS = -s Loader flags

DLLIB = -ldl
XCFLAGS = -I/usr/X11R6/include
XLDFLAGS =
XINCPATH =
XMINCPATH =
1$GISBASE is the directory where GRASS is installed. See 10.1 UNIX Environment (p. 65) for details.

433

A Appendix

XLIBPATH = -L/usr/X11R6/lib
XTLIBPATH =
XMLIBPATH =
XLIB = -lSM -lICE -lX11
XTLIB = -lXt
XMLIB = -lXm
XEXTRALIBS =

COMPATLIB =
TERMLIB = Terminal emulation libraries
CURSES = -lncurses $(TERMLIB) $(COMPATLIB) ncurses libraries
MATHLIB = -lm Math libraries
XDRLIB = -lnsl

#PostgreSQL:
PQINCPATH = -I/usr/include/pgsql
PQLIBPATH = /usr/include/lib
PQLIB = -L/usr/include/lib -lpq -lcrypt

#ODBC:
ODBCINC = -I/usr/local/include

#Image formats:
PNGINC = -I/usr/include
PNGLIB = -L/usr/X11R6/lib -L/usr/lib

JPEGINCPATH = -I/usr/include
JPEGLIBPATH = -L/usr/X11R6/lib -L/usr/lib

TIFFINCPATH = -I/usr/local/include
TIFFLIBPATH = -L/usr/local/lib

#openGL files for NVIZ/r3.showdspf
OPENGLINC = -I/usr/local/include/GL
OPENGLwINC = -I/usr/X11R6/include/GL
OPENGLLIB = -l/usr/lib/libGL.so
OPENGLULIB = -l/usr/lib/libGLU.so
LGLWM =

#tcl/tk stuff
TCLINCDIR = -I/usr/include
TKINCDIR = -I/usr/include
TCLTKLIBS = -L/usr/lib -ltk8.3 -ltcl8.3

LIBRULE = ar ruv $ $?; ranlib $ Library archiver
USE_TERMIO = Use TERMIO or not?

Uncomment below to input Korean(Asian?) characters in v.digit or etc.:

434

A.1 Appendix A: Annotated Gmakefile Predefined Variables

#DASIAN_CHARS = -DASIAN_CHARS

It’s hard to click two buttons simultaneously with two button mouse.
Situation is worse, if it requires continuous clicking.
In this case uncomment below.
#DANOTHER_BUTTON = -DANOTHER_BUTTON

make.mid

The make.mid file uses the variables in head to construct other variables that are useful for
compilation rules. The contents of this file are usually unchanged from system to system.
Here is a sample make.mid file:

Variable Value Description
SHELL = /bin/sh
BIN = $(GISBASE)/bin GRASS command
links
ETC = $(GISBASE)/etc Main GRASS com-
mands
SCRIPTS = $(GISBASE)/scripts GRASS scripts

BIN_INTER = $(ETC)/bin/main/inter Main interactive commands
BIN_CMD = $(ETC)/bin/main/cmd Main command-line com-
mands

TXT = $(GISBASE)/txt Text directory
MAN1 = $(GISBASE)/man/1 Manual page
directories
MAN2 = $(GISBASE)/man/2
MAN3 = $(GISBASE)/man/3
MAN4 = $(GISBASE)/man/4
MAN5 = $(GISBASE)/man/5
MAN6 = $(GISBASE)/man/6
HELP = $(GISBASE)/man/help
CFLAGS = $(COMPILE_FLAGS) $(EXTRA_CFLAGS) -I$(LIBDIR) $(USE_TERMIO)

AR = $(GMAKE) -makeparentdir $@; All library archiver
flags

$(LIBRULE)

MANROFF = tbl -TX Manual formatter com-
mand and options

$(SRC)/man.help/man.version
$(SRC)/man.help/man.header $? |
nroff -Tlp | col -b > $@

435

A Appendix

MAKEALL = $(GMAKE) -all Command to make GRASS

LIBDIR = $(SRC)/libes GRASS li-
braries
DIG_LIBDIR = $(SRC)/mapdev/libes
DIG_INCLUDE = $(SRC)/mapdev/lib
VECT_INCLUDE =-I$(SRC)/mapdev/Vlib

-I$(SRC)/mapdev/diglib

VASKLIB = $(LIBDIR)/libvask.a Vask libraries
VASK = $(VASKLIB) $(CURSES) Vask and flags

Variable Value Description
GISLIB = $(LIBDIR)/libgis.a GIS libraries
ICONLIB = $(LIBDIR)/libicon.a
LOCKLIB = $(LIBDIR)/liblock.a
IMAGERYLIB = $(LIBDIR)/libI.a GIS Libraries
RO WIOLIB = $(LIBDIR)/librowio.a
COORCNVLIB = $(LIBDIR)/libcoorcnv.a
SEGMENTLIB = $(LIBDIR)/libsegment.a
BTREELIB = $(LIBDIR)/libbtree.a
DLGLIB = $(LIBDIR)/libdlg.a
RASTERLIB = $(LIBDIR)/libraster.a
DISPLAYLIB = $(LIBDIR)/libdisplay.a
D_LIB = $(LIBDIR)/libD.a
DRIVERLIB = $(SRC)/display/devices/lib/driverlib.a
LINKMLIB = $(LIBDIR)/liblinkm.a
DIGLIB = $(LIBDIR)/libdig.a
DIG2LIB = $(LIBDIR)/libdig2.a
VECTLIB_REAL = $(LIBDIR)/libvect.a
VECTLIB = $(VECTLIB_REAL) $(DIG2LIB)
DIG_ATTLIB = $(LIBDIR)/libdig_atts.a
XDISPLAYLIB = $(LIBDIR)/libXdisplay.a

A.2 Appendix B: The CELL Data Type

GRASS cell file data is defined to be of type CELL. This data type is defined in the "gis.h"
header file. Programmers must declare all variables and buffers which will hold raster data or
category codes as type CELL.
Under GRASS the CELL data type is declared to be int, but the programmer should not assume
this. What should be assumed is that CELL is a signed integer type. It may be changed some-
time to short or long. This implies that use of CELL data with routines which do not know
about this data type (e.g., fprintf(stdout,), sscanf(), etc.) must use an intermediate variable of
type long.
To print a CELL value, it must be cast to long. For example:

436

A.2 Appendix B: The CELL Data Type

CELL c; /* raster value to be printed */

/* some code to get a value for c */

fprintf(stdout, "%ld\n", (long) c); /* cast c to long to print */

To read a CELL value, for example from user typed input, it is necessary to read into a long
variable, and then assign it to the CELL variable. For example:2

char userbuf 3 128 4 ;
CELL c; long x;

fprintf (stdout, "Which category? "); /* prompt user */
gets(userbuf); /* get user response * /

sscanf (userbuf,"%ld", &x); /* scan category into long variable */
c = (CELL) x; /* assign long value to CELL
value */

Of course, with GRASS library routines that are designed to handle the CELL type, this problem
does not arise. It is only when CELL data must be used in routines which do not know about
the CELL type, that the values must be cast to or from long.

2This example does not check for valid inputs, EOF, etc., which good code must do.

437

A Appendix

A.3 Appendix C: Index to GIS Library

Here is an index of GIS Library routines, with calling sequences and short function descriptions.

GIS Library

routine parameters description__________________

G_add_color_rule (cat1, r1, g1, b1, cat2, r2, g2, b2, colors) set
colors

G_adjust_Cell_head (cellhd, rflag, cflag) adjust
cell header
G_adjust_easting (east, region) returns east
larger than west
G_adjust_east_longitude (east, west) adjust east lon-
gitude
G_align_window (region, ref) align two re-
gions
G_allocate_cell_buf () allocate a
raster buffer
G_area_for_zone_on_ellipsoid (north, south) area be-
tween latitudes
G_area_for_zone_on_sphere (north, south) area between
latitudes
G_area_of_cell_at_row (row) cell area in spec-
ified
G_area_of_polygon (x, y, n) area
in square meters of polygon

G_ask_any (prompt, name, element, label, warn) prompt for any
valid file name
G_ask_cell_in_mapset (prompt, name) prompt for ex-
isting raster file

G_ask_cell_new (prompt, name) prompt for
new raster file
G_ask_cell_old (prompt, name) prompt for
existing raster file

G_ask_in_mapset (prompt, name, element, label) prompt
for existing database file
G_ask_new (prompt, name, element, label) prompt for
new database file
G_ask_old (prompt, name, element, label) prompt
for existing database file

438

A.3 Appendix C: Index to GIS Library

G_ask_sites_in_mapset (prompt, name) prompt for ex-
isting site list file

G_ask_sites_new (prompt, name) prompt for
new site list file
G_ask_sites_old (prompt, name) prompt for
existing site list file

G_ask_vector_in_mapset (prompt, name) prompt for
an existing vector file
G_ask_vector_new (prompt, name) prompt
for a new vector file
G_ask_vector_old (prompt, name) prompt for
an existing vector file

G_begin_cell_area_calculations () begin cell
area calculations
G_begin_distance_calculations () begin dis-
tance calculations
G_begin_ellipsoid_polygon_area (a, e2) begin
area calculations
G_begin_geodesic_distance (a, e2) begin geodesic
distance

G_begin_polygon_area_calculations () begin polygon
area calculations
G_begin_zone_area_on_ellipsoid (a, e2, s) begin
ellipsoid area calculations
G_begin_zone_area_on_sphere (r, s) initialize
calculations for sphere
G_bresenham_line (x1, y1, x2, y2, point) Bresenham
line algorithm

G_calloc (n,size) memory
allocation
G_close_cell (fd) close a raster file
G_col_to_easting (col, region) column to east-
ing
G_database_projection_name (proj) query car-
tographic projection
G_database_unit_name (plural) database units
G_database_units_to_meters_factor () conversion to
meters
G_date () current date
and time
G_define_flag () return Flag struc-
ture
G_define_option () returns Option
structure

439

A Appendix

G_disable_interactive () turns off interactive
capability
G_distance (x1, y1, x2, y2) distance in me-
ters
G_easting_to_col (east, region) easting to col-
umn
G_ellipsoid_name (n) return ellop-
soid name
G_ellipsoid_polygon_area (lon, lat, n) area of lat-long
polygon
G_fatal_error (message) print er-
ror message and exit
G_find_cell (name,mapset) find a raster file

G_find_cell_stat (cat, count, s) random query
of cell stats
G_find_file (element, name, mapset) find a database
file
G_find_vector2 (name,mapset) find a vector
file
G_find_vector (name,mapset) find a vector
file
G_fopen_append (element, name) open a database
file for update
G_fopen_new (element, name) open a new
database file
G_fopen_old (element, name, mapset) open a database
file for reading

G_fopen_sites_new (name) open
a new site list file
G_fopen_sites_old (name, mapset) open an
existing site list file
G_fopen_vector_new (name) opena
new vector file
G_fopen_vector_old (name, mapset) open an
existing vector file
G_fork () create a pro-
tected child process
G_format_easting (east, buf, projection) easting
to ASCII
G_format_northing (north, buf, projection) northing
to ASCII

G_format_resolution (resolution, buf, projection) resolution
to ASCII
G_free_cats (cats) free category struc-
ture memory

440

A.3 Appendix C: Index to GIS Library

G_free_cell_stats (s) free cell stats
G_free_colors (colors) free color
structure memory
G_fully_qualified_name (name, mapset) fully quali-
fied file name
G_geodesic_distance (lon1, lat1, lon2, lat2) geodesic
distance
G_geodesic_distance_lon_to_lon (lon1, lon2) geodesic distance
G_get_ask_return_msg () get Hit RETURN
msg
G_get_cat (n,cats) get a
category label
G_get_cats_title (cats) get title from
category structure
G_get_cellhd (name, mapset, cellhd) read the raster
header
G_get_cell_title (name, mapset) get raster
map title
G_get_color (cat, red, green, blue, colors) get a cate-
gory color
G_get_color_range (min, max, colors) get
color range
G_get_default_window (region) read the de-
fault region
G_get_ellipsoid_by_name (name, a, e2) get ellipsoid
by name
G_get_ellipsoid_parameters (a, e2) get el-
lipsoid parameters
G_ _getenv (name) query GRASS
environment variable
G_getenv (name) query
GRASS environment variable
G_get_map_row (fd, cell, row) read a raster
file

G_get_map_row_nomask (fd, cell, row) read a raster
file (without masking)

G_get_range_min_max (range, min, max) get range
min and max
G_gets (buf) get a line
of input (detect ctrl-z)
G_get_set_window (region) get the
active region
G_get_site (fd, east, north, desc) read site
list file
G_get_window (region) read the
database region

441

A Appendix

G_gisbase () top level
module directory
G_gisdbase () top level database
directory
G_gisinit (program_name) initialize
gis library

G_home () user’s home
directory
G_init_cats (n, title, cats) initialize category
structure
G_init_cell_stats (s) initialize cell stats
G_init_colors (colors) initialize color
structure
G_init_range (range) initialize range
structure
G_intr_char () return interrupt char
G_is_reclass (name, mapset, r_name, r_mapset) reclass file?
G_legal_filename (name) check for
legal database file names
G_location () current location name
G_location_path () current loca-
tion directory

G_lookup_colors (raster, red, green, blue, set, n, colors) lookup
an array of colors
G_make_aspect_colors (colors, min, max) make as-
pect colors
G_make_grey_scale_colors (colors, min, max) make
linear grey scale
G_make_gyr_colors (colors, min, max) make
green,yellow,red colors
G_make_histogram_eq_colors (colors, s) make
histogram-stretched grey colors

G_make_rainbow_colors (colors, min, max) make rain-
bow colors
G_make_ramp_colors (colors, min, max) make color
ramp
G_make_random_colors (colors, min, max) make ran-
dom colors

G_make_ryg_colors (colors, min, max) make
red,yellow,green colors

G_make_wave_colors (colors, min, max) make color
wave
G_malloc (size) memory
allocation

442

A.3 Appendix C: Index to GIS Library

G_mapset () current mapset
name

G_meridional_radius_of_curvature (lon, a, e2) meridional ra-
dius of curvature

G_myname () location title
G_next_cell_stat (cat, count, s) retrieve sorted
cell stats
G_northing_to_row (north, region) northing
to row
G_open_cell_new (name) open a new
raster file (sequential)
G_open_cell_new_random (name) open a new
raster file (random)

G_open_cell_new_uncompressed (name) open a new
raster file (uncompressed)

G_open_cell_old (name, mapset) open an ex-
isting raster file
G_open_new (element, name) open a new
database file

G_open_old (element, name, mapset) open a database
file for reading

G_open_update (element, name) open a database
file for update
G_parser (argc, argv) parse com-
mand line
G_percent (n, total, incr) print per-
cent complete messages
G_planimetric_polygon_area (x, y, n) area
in coordinate units
G_plot_fx (f, east1, east2) plot f(east1)
to f(east2)

G_plot_line (east1, north1, east2, north2) plot line be-
tween latlon coordinates

G_plot_polygon (east, north, n) plot filled poly-
gon with n vertices
G_plot_where_en (x, y, east, north) x,y to
east,north
G_plot_where_xy (east, north, x, y) east,north
to x,y
G_pole_in_polygon (x, y, n) pole
in polygon

443

A Appendix

G_program_name () return module
name
G_projection () query cartographic
projection
G_put_cellhd (name, cellhd) write the raster
header
G_put_cell_title (name, title) change raster
map title
G_put_map_row (fd, buf) write a
raster file (sequential)

G_put_map_row_random (fd, buf, row, col, ncells) write a raster
file (random)

G_put_site (fd, east, north, desc) write
site list file
G_put_window (region) write the
database region

G_radius_of_conformal_tangent_sphere (lon, a, e2) radius of con-
formal tangent sphere

G_read_cats (name, mapset, cats) read raster
category file
G_read_colors (name, mapset, colors) read map layer
color table
G_read_history (name, mapset, history) read raster his-
tory file
G_read_range (name, mapset, range) read raster range
G_read_vector_cats (name, mapset, cats) read
vector category file
G_realloc (ptr, size) memory
allocation
G_remove (element, name) remove
a database file
G_rename (element, old, new) rename
a database file
G_rewind_cell_stats (s) reset/rewind
cell stats
G_row_to_northing (row, region) row to nor-
thing
G_row_update_range (cell, n, range) update
range structure
G_scan_easting (buf, easting, projection) ASCII east-
ing to double

G_scan_northing (buf, northing, projection) ASCII nor-
thing to double

444

A.3 Appendix C: Index to GIS Library

G_scan_resolution (buf, resolution, projection) ASCII
resolution to double

G_set_ask_return_msg (msg) set Hit RETURN
msg
G_set_cat (n, label, cats) set a cat-
egory label
G_set_cats_title (title, cats) set title in cate-
gory structure
G_set_color (cat, red, green, blue, colors) set a cate-
gory color
G_ _setenv (name, value) set GRASS envi-
ronment variable
G_setenv (name, value) set GRASS
environment variable
G_set_error_routine (handler) change
error handling
G_set_geodesic_distance_lat1 (lat1) set geodesic
distance lat1
G_set_geodesic_distance_lat2 (lat2) set geodesic
distance lat2
G_setup_plot (t, b, l, r, Move, Cont) initialize plotting
routines
G_set_window (region) set the ac-
tive region
G_shortest_way (east1,east2) shortest way
between eastings
G_short_history (name, type, history) initialize
history structure
G_sleep_on_error (flag) sleep on
error?
G_squeeze (s) remove unnecessary
white space
G_store (s) copy string to
allocated memory
G_strcat (dst,src) concatenate
strings
G_strcpy (dst, src) copy
strings
G_strip (s) remove lead-
ing/training white space
G_strncpy (dst, src, n) copy strings
G_suppress_warnings (flag) suppress warn-
ings?
G_system (command) run a shell
level command
G_tempfile () returns a temporary
file name

445

A Appendix

G_tolcase (s) convert string
to lower case
G_toucase (s) convert string
to upper case

G_transverse_radius_of_curvature (lon, a, e2) transverse radius
of curvature

G_unctrl (c) printable ver-
sion of control character
G_unopen_cell (fd) unopen a raster
file
G_unset_error_routine () reset normal error
handling
G_update_cell_stats (data, n, s) add data to
cell stats
G_update_range (cat, range) update range
structure
G_usage () command line
help/usage message
G_warning (message) print warn-
ing message and continue
G_whoami () user’s name
G_window_cols () number of columns
in active region
G_window_rows () number of rows
in active region

G_write_cats (name, cats) write raster cate-
gory file
G_write_colors (name, mapset, colors) write map layer
color table
G_write_history (name, history) write raster
history file
G_write_range (name, range) write raster range
file
G_write_vector_cats (name, cats) write vec-
tor category file
G_yes (question,default) ask a yes/no
question
G_zero_cell_buf (buf) zero a raster
buffer
G_zone () query carto-
graphic zone

446

A.4 Appendix D: Index to Vector Library

A.4 Appendix D: Index to Vector Library

Here is an index of vector Library routines, with calling sequences and short function descrip-
tions.

vector Library

routine parameters description
dig_check_dist (Map, n, x, y, d) find dis-
tance of point to line
dig_point_in_area (Map, x, y, pa) is point in
area?
dig_point_to_area (Map, x, y) find which
area point is in

dig_point_to_line (Map, x, y, type) find which
arc point is closest to
V1_read_line (Map, Points, offset) read vec-
tor arc by specifying offset

V2_area_att (Map, area) get attribute num-
ber of area
V2_get_area_bbox (Map, area, n, s, e, w) get bound-
ing box of area
V2_get_area (Map, n, pa) get area info from
id
V2_get_line_bbox (Map, line, n, s, e, w) get
bounding box of arc
V2_line_att (Map, line) get attribute number
of arc
V2_num_areas (Map) get number
of areas in vector map
V2_num_lines (Map) get number
of arcs in vector map

V2_read_line (Map, Points, line) read vec-
tor arc by specifying line id

Vect_close (Map) close a vector
map
Vect_copy_head_data (from, to) copy vec-
tor header struct data

Vect_copy_pnts_to_xy (Points, x, y, n) convert line_pnts
structure to xy arrays
Vect_copy_xy_to_pnts (Points, x, y, n) convert xy ar-
rays to line_pnts structure

447

A Appendix

Vect_destroy_line_struct (Points) deallocate
line points structure space
Vect_get_area_points (Map, area, Points) get defining
points for area polygon

Vect_level (Map) get open level of
vector map
Vect_new_line_struct () create new
initialized line points structure
Vect_open_new (Map, name) open new vec-
tor map
Vect_open_old (Map, name, mapset) open
existing vector map
Vect_print_header (Map) print header
info to stdout
Vect_read_next_line (Map, Points) read next
vector line
Vect_remove_constraints (Map) unset any vec-
tor read constraints
Vect_rewind (Map) rewind vector
map for re-reading

Vect_set_constraint_region (Map, n, s, e, w) set re-
stricted region to read vector arcs from

Vect_set_constraint_type (Map, type) specify types of
arcs to read
Vect_set_open_level (level) specify
level for opening map
Vect_write_line (Map, type, Points) write out
arc to vector map

A.5 Appendix E: Index to Imagery Library

Here is an index of Imagery Library routines, with calling sequences and short function descrip-
tions.

Imagery Library

routine parameters description

I_add_file_to_group_ref (name, mapset, ref) add file
name to Ref structure
I_ask_group_any (prompt, group) prompt for
any valid group name

448

A.6 Appendix F: Index to Display Graphics Library

I_ask_group_new (prompt, group) prompt for
new group
I_ask_group_old (prompt, group) prompt for
an existing group
I_find_group (group) does group
exist?
I_free_group_ref (ref) free Ref struc-
ture
I_get_control_points (group, cp) read group
control points
I_get_group_ref (group, ref) read group REF
file
I_get_subgroup_ref (group, subgroup,
ref) read subgroup REF file
I_get_target (group, location, mapset) read target in-
formation
I_init_group_ref (ref) initialize Ref
structure

I_new_control_point (cp, e1, n1, e2, n2, status) add
new control point

I_put_control_points (group, cp) write group
control points
I_put_group_ref (group, ref) write group REF
file

I_put_subgroup_ref (group, subgroup, ref) write sub-
group REF file

I_put_target (group, location, mapset) write target in-
formation
I_transfer_group_ref_file (src, n, dst) copy Ref lists

A.6 Appendix F: Index to Display Graphics Library

Here is an index of Display Graphics Library routines, with calling sequences and short function
descriptions.

Display Graphics Library

routine parameters description
D_add_to_list (string) add command
to frame display list
D_a_to_d_col (column) array to screen

449

A Appendix

(column)
D_a_to_d_row (row) array to screen
(row)

D_cell_draw_setup (top, bottom, left, right) prepare
for raster graphics
D_check_colormap_size (min,max,ncolors) verify a range
of colors

D_check_map_window (region) assign/retrieve
current map region
D_clear_window () clear frame dis-
play lists
D_clear_window () clears informa-
tion about current frame
D_clip (s, n, w, e, x, y, c_x, c_y) clip coor-
dinates to window
D_color (cat, colors) select raster
color for line
D_cont_abs (x,y) line to x,y
D_cont_rel (x,y) line to x,y

D_do_conversions (region, top, bottom, left, right) initialize
conversions

D_draw_cell (row, raster, colors) render a
raster row
D_d_to_a_col (x) screen to array
(x)
D_d_to_a_row (y) screen to array
(y)
D_d_to_u_col (x) screen to earth (x)
D_d_to_u_row (y) screen to earth
(y)
D_erase_window () erase current
frame
D_get_cell_name (name) retrieve
raster map name
D_get_cur_wind (name) identify cur-
rent graphics frame

D_get_screen_window (top, bottom, left, right) retrieve current
frame coordinates

D_lookup_colors (data, n, colors) change to
hardware color
D_move_abs (x,y) move to pixel
D_move_rel (x,y) move to pixel

450

A.6 Appendix F: Index to Display Graphics Library

D_new_window (name, top, bottom, left, right) create
new graphics frame
D_popup (bcolor, tcolor, dcolor, top, left, size, options) pop-
up menu

D_raster (raster, n, repeat, colors) low lev el
raster plotting
D_remove_window () remove a
frame
D_reset_color (data, r, g, b) reset raster color
value
D_reset_colors (colors) set colors
in driver

D_reset_screen_window (top, bottom, left, right) resets current
frame position
D_set_cell_name (name) add raster
map name to display list
D_set_clip_window_to_map_window () set clipping
window to map window

D_set_clip_window (top, bottom, left, right) set clip-
ping window
D_set_colors (colors) establish raster
colors for graphics
D_set_cur_wind (name) set current
graphics frame
D_set_overlay_mode (flag) configure
raster overlay mode
D_setup (clear) graphics
frame setup
D_setup (clear) initialize/create
a frame
D_show_window (color) outlinescurrent
frame

D_timestamp () give current time
to frame
D_translate_color (name) color name
to number
D_u_to_a_col (east) earth to array
(east)
D_u_to_a_row (north) earth to ar-
ray (north)
D_u_to_d_col (east) earth to screen
(east)
D_u_to_d_row (north) earth to screen
(north)

451

A Appendix

A.7 Appendix G: Index to Raster Graphics Library

Here is an index of Raster Graphics Library routines, with calling sequences and short function
descriptions.

Raster Graphics Library

routine parameters description
R_box_abs (x1,y1,x2,y2) fill a box
R_box_rel (dx,dy) fill a
box
R_close_driver () terminate graph-
ics
R_color (color) select color
R_color_table_fixed () select fixed
color table
R_color_table_float () select float-
ing color table
R_cont_abs (x,y) draw line
R_cont_rel (dx,dy) draw line
R_erase () erase screen
R_flush () flush graph-
ics
R_font (font) choose font

R_get_location_with_box (x,y,nx,ny,button) get mouse
location using a box
R_get_location_with_line (x,y,nx,ny,button) get mouse
location using a line
R_get_location_with_pointer (nx,ny,button) get mouse
location using pointer

R_get_text_box (text, top, bottom, left, right) get text
extents
R_move_abs (x,y) move current lo-
cation
R_move_rel (dx,dy) move current
location
R_open_driver () initialize graph-
ics
R_polydots_abs (x,y,num) draw a
series of dots
R_polydots_rel (x,y,num) draw a
series of dots
R_polygon_abs (x,y,num) draw a
closed polygon

452

A.8 Appendix H: Index to Rowio Library

R_polygon_rel (x,y,num) draw a
closed polygon
R_polyline_abs (x,y,num) draw an
open polygon
R_polyline_rel (x,y,num) draw an
open polygon
R_raster (num,nrows,withzero,raster) draw
a raster
R_reset_color (red, green, blu, num) define single color
R_reset_colors (min,max,red,green,blue) define mul-
tiple colors
R_RGB_color (red,green,blue) select color
R_RGB_raster (num,nrows,red,green,blue,withzero) draw a raster
R_screen_bot () bottom of screen
R_screen_left () screen left edge
R_screen_rite () screen right edge
R_screen_top () top of screen
R_set_RGB_color (red,green,blue) initialize
graphics
R_set_window (top,bottom,left,right) set text clipping
frame
R_stabilize () synchronize graphics
R_standard_color (color) select stan-
dard color
R_text_size (width, height) set text size
R_text (text) write text

A.8 Appendix H: Index to Rowio Library

Here is an index of Rowio Library routines, with calling sequences and short function descrip-
tions.

Rowio Library

routine parameters description
rowio_fileno (r) get file descriptor
rowio_flush (r) force pending up-
dates to disk
rowio_forget (r, n) forget a row
rowio_get (r, n) read a row
rowio_put (r, buf, n) write
a row
rowio_release (r) free allocated mem-
ory

453

A Appendix

rowio_setup (r, fd, nrows, len, getrow, putrow) configure rowio
structure

A.9 Appendix I: Index to Segment Library

Here is an index of Segment Library routines, with calling sequences and short function de-
scriptions.

Segment Library

routine parameters description
segment_flush (seg) flush pending
updates to disk

segment_format (fd, nrows, ncols, srows, scols, len) format a
segment file

segment_get_row (seg, buf, row) read row from
segment file
segment_get (seg, value, row, col) get value
from segment file
segment_init (seg, fd, nsegs) initialize seg-
ment structure
segment_put_row (seg, buf, row) write row
to segment file
segment_put (seg, value, row, col) put value
to segment file
segment_release (seg) free allocated
memory

A.10 Appendix J: Index to Vask Library

Here is an index of Vask Library routines, with calling sequences and short function descrip-
tions.

Vask Library

routine parameters description
V_call () interact with the user
V_clear () initialize screen description
V_const (value, type, row, col,

len)
define screen constant

454

A.11 Appendix K: Index to Grid3D Library Subroutines

V_float_accuracy (num) set number of decimal
places

V_intrpt_msg (text) change ctrl-c message
V_intrpt_ok () allow ctrl-c
V_line (num, text) add line of text to screen
V_ques (value, type, row, col,

len)
define screen question

A.11 Appendix K: Index to Grid3D Library Subroutines

G3D Function Index

G3d_adjustRegion
G3d_adjustRegionRes
G3d_allocTiles
G3d_allocTilesType
G3d_autolockOff
G3d_autolockOn

G3d_beginCycle

G3d_cacheSizeEncode
G3d_changePrecision
G3d_changeType
G3d_closeCell
G3d_compareFiles
G3d_computeClippedTileDimensions
G3d_coord2tileCoord
G3d_coord2tileIndex
G3d_coordInRange

G3d_endCycle
G3d_extract2dRegion

G3d_fatalError
G3d_filename
G3d_fileTypeMap
G3d_flushTile
G3d_flushTileCube
G3d_flushTilesInCube
G3d_free
G3d_freeTiles

G3d_g3dType2cellType
G3d_getAllignedVolumeA
G3d_getBlock
G3d_getCacheLimit
G3d_getCacheSize
G3d_getCompressionMode
G3d_getCoordsMap
G3d_getDouble
G3d_getDoubleRegion

455

A Appendix

G3d_getFileType
G3d_getFloat
G3d_getFloatRegion
G3d_getNearestNeighborFunPtr
G3d_getNofTilesMap
G3d_getRegionMap
G3d_getRegionStructMap
G3d_getRegionValue
G3d_getResamplingFun
G3d_getStandard3dInputParams
G3d_getTileDimension
G3d_getTileDimensionsMap
G3d_getTilePtr
G3d_getValue
G3d_getValueRegion
G3d_getVolumeA
G3d_getWindow

G3d_incorporate2dRegion
G3d_initDefaults
G3d_isMasked
G3d_isNullValueNum
G3d_isValidLocation

G3d_location2coord
G3d_lockTile

G3d_makeMapsetMapDirectory
G3d_malloc
G3d_maskDouble
G3d_maskFile
G3d_maskFileExists
G3d_maskFloat
G3d_maskIsOff
G3d_maskIsOn
G3d_maskMapExists
G3d_maskNum
G3d_maskOff
G3d_maskOn
G3d_maskReopen
G3d_maskTile
G3d_minUnlocked

G3d_nearestNeighbor

G3d_openCellNew
G3d_openCellNewParam
G3d_openCellOld

G3d_printError
G3d_printHeader
G3d_putDouble
G3d_putFloat
G3d_putValue

G3d_range_load
G3d_range_min_max
G3d_range_write
G3d_readCats

456

A.12 Appendix L: Index to DateTime Library Subroutines

G3d_readColors
G3d_readRegionMap
G3d_readTile
G3d_readTileDouble
G3d_readTileFloat
G3d_readWindow
G3d_realloc
G3d_regionCopy
G3d_removeColor
G3d_removeTile
G3d_retile

G3d_setCacheLimit
G3d_setCacheSize
G3d_setCompressionMode
G3d_setErrorFun
G3d_setFileType
G3d_setNullTile
G3d_setNullTileType
G3d_setNullValue
G3d_setResamplingFun
G3d_setStandard3dInputParams
G3d_setTileDimension
G3d_setUnit
G3d_setWindow
G3d_setWindowMap
G3d_skipError

G3d_tile2tileIndex
G3d_tileCoordOrigin
G3d_tileIndex2tile
G3d_tileIndexInRange
G3d_tileIndexOrigin
G3d_tileInRange
G3d_tileLoad
G3d_tilePrecisionMap
G3d_tileTypeMap
G3d_tilePrecisionMap

G3d_unlockAll
G3d_unlockTile
G3d_useWindowParams

G3d_windowPtr
G3d_writeAscii
G3d_writeCats
G3d_writeColors
G3d_writeTile
G3d_writeTileDouble
G3d_writeTileFloat
G3d_writeWindow

A.12 Appendix L: Index to DateTime Library Subroutines

datetime_change_from_to
datetime_change_timezone

457

A Appendix

datetime_change_to_utc
datetime_check_day
datetime_check_fracsec
datetime_check_hour
datetime_check_increment
datetime_check_minute
datetime_check_month
datetime_check_second
datetime_check_timezone
datetime_check_type
datetime_check_year
datetime_clear_error
datetime_copy
datetime_days_in_month
datetime_days_in_year
datetime_decompose_timezone
datetime_difference
datetime_error
datetime_format
datetime_get_day
datetime_get_error_code
datetime_get_error_msg
datetime_get_fracsec
datetime_get_hour
datetime_get_increment_type
datetime_get_local_time
datetime_get_local_timezone
datetime_get_minute
datetime_get_month
datetime_get_second
datetime_get_timezone
datetime_get_type
datetime_get_year
datetime_increment
datetime_invert_sign
datetime_is_absolute
datetime_is_leap_year
datetime_is_positive
datetime_is_relative
datetime_is_same
datetime_is_valid_increment
datetime_is_valid_timezone
datetime_is_valid_type
datetime_scan
datetime_set_day
datetime_set_fracsec
datetime_set_hour
datetime_set_increment_type
datetime_set_minute
datetime_set_month
datetime_set_negative
datetime_set_positive
datetime_set_second
datetime_set_timezone
datetime_set_type
datetime_set_year
datetime_unset_timezone

458

A.13 Appendix M: Permuted Index for Library Subroutines

A.13 Appendix M: Permuted Index for Library Subroutines

get theactive region G_get_set_window()
set theactive region G_set_window()
number of columns inactive region G_window_cols()
number of rows inactive region G_window_rows()
add command to frame display list D_add_to_list()
add data to cell stats G_update_cell_stats()
add file name to Ref structure I_add_file_to_group_ref()
add line of text to screen V_line()
add new control point I_new_control_point()
add raster map name to display list D_set_cell_name()
adjust cell header G_adjust_Cell_head()
adjust east longitude G_adjust_east_longitude()
Bresenham linealgorithm G_bresenham_line()
align two regions G_align_window()
allocate a raster buffer G_allocate_cell_buf()
copy string toallocated memory G_store()
freeallocated memory rowio_release()
freeallocated memory segment_release()
memoryallocation G_calloc()
memoryallocation G_malloc()
memoryallocation G_realloc()
allow ctrlhyphenc V_intrpt_ok()
get bounding box ofarc Vtwo_get_line_bbox()
get attribute number ofarc Vtwo_line_att()
read vectorarc by specifying line id Vtwo_read_line()
read vectorarc by specifying offset Vone_read_line()
find whicharc point is closest to dig_point_to_line()
write outarc to vector map Vect_write_line()
set restricted region to read vectorarcs from Vect_set_constraint_region()
get number ofarcs in vector map Vtwo_num_lines()
specify types ofarcs to read Vect_set_constraint_type()
is point inareaquestion dig_point_in_area()
get attribute number ofarea Vtwo_area_att()
get bounding box ofarea Vtwo_get_area_bbox()
area between latitudes G_area_for_zone_on_ellipsoid()
area between latitudes G_area_for_zone_on_sphere()
begin cellarea calculations G_begin_cell_area_calculations()
beginarea calculations G_begin_ellipsoid_polygon_area()
begin polygonarea calculations G_begin_polygon_area_calculations()
beginarea calculations for ellipsoid G_begin_zone_area_on_ellipsoid()
area in coordinate units G_planimetric_polygon_area()
cellarea in specified row G_area_of_cell_at_row()
area in square meters of polygon G_area_of_polygon()
getarea info from id Vtwo_get_area()
area of lathyphenlong polygon G_ellipsoid_polygon_area()

459

A Appendix

find whicharea point is in dig_point_to_area()
get defining points forarea polygon Vect_get_area_points()
get number ofareas in vector map Vtwo_num_areas()
earth toarray parenlefteastparenright D_u_to_a_col()
earth toarray parenleftnorthparenright D_u_to_a_row()
lookup anarray of colors G_lookup_colors()
array to screen parenleftcolumnparenright D_a_to_d_col()
array to screen parenleftrowparenright D_a_to_d_row()
screen toarray parenleftxparenright D_d_to_a_col()
screen toarray parenleftyparenright D_d_to_a_row()
convert line_pnts structure to xyarrays Vect_copy_pnts_to_xy()
convert xyarrays to line_pnts structure Vect_copy_xy_to_pnts()
easting toASCII G_format_easting()
northing toASCII G_format_northing()
resolution toASCII G_format_resolution()
ASCII easting to double G_scan_easting()
ASCII northing to double G_scan_northing()
ASCII resolution to double G_scan_resolution()
ask a yesslashno question G_yes()
makeaspect colors G_make_aspect_colors()
assignslashretrieve current map region D_check_map_window()
getattribute number of arc Vtwo_line_att()
getattribute number of area Vtwo_area_att()
begin area calculations G_begin_ellipsoid_polygon_area()
begin area calculations for ellipsoid G_begin_zone_area_on_ellipsoid()
begin cell area calculations G_begin_cell_area_calculations()
begin distance calculations G_begin_distance_calculations()
begin geodesic distance G_begin_geodesic_distance()
begin polygon area calculations G_begin_polygon_area_calculations()
bottom of screen R_screen_bot()
getbounding box of arc Vtwo_get_line_bbox()
getbounding box of area Vtwo_get_area_bbox()
fill abox R_box_abs()
fill abox R_box_rel()
get mouse location using abox R_get_location_with_box()
get boundingbox of arc Vtwo_get_line_bbox()
get boundingbox of area Vtwo_get_area_bbox()
Bresenham line algorithm G_bresenham_line()
allocate a rasterbuffer G_allocate_cell_buf()
zero a rasterbuffer G_zero_cell_buf()
begin cell areacalculations G_begin_cell_area_calculations()
begin distancecalculations G_begin_distance_calculations()
begin areacalculations G_begin_ellipsoid_polygon_area()
begin polygon areacalculations G_begin_polygon_area_calculations()
begin areacalculations for ellipsoid G_begin_zone_area_on_ellipsoid()
initializecalculations for sphere G_begin_zone_area_on_sphere()
turns off interactivecapability G_disable_interactive()

460

A.13 Appendix M: Permuted Index for Library Subroutines

querycartographic projection G_database_projection_name()
querycartographic projection G_projection()
querycartographic zone G_zone()
convert string to lowercase G_tolcase()
convert string to uppercase G_toucase()
get acategory color G_get_color()
set acategory color G_set_color()
read rastercategory file G_read_cats()
read vectorcategory file G_read_vector_cats()
write rastercategory file G_write_cats()
write vectorcategory file G_write_vector_cats()
get acategory label G_get_cat()
set acategory label G_set_cat()
get title fromcategory structure G_get_cats_title()
initializecategory structure G_init_cats()
set title incategory structure G_set_cats_title()
freecategory structure memory G_free_cats()
begincell area calculations G_begin_cell_area_calculations()
cell area in specified row G_area_of_cell_at_row()
adjustcell header G_adjust_Cell_head()
random query ofcell stats G_find_cell_stat()
freecell stats G_free_cell_stats()
initializecell stats G_init_cell_stats()
retrieve sortedcell stats G_next_cell_stat()
resetslashrewindcell stats G_rewind_cell_stats()
add data tocell stats G_update_cell_stats()
change ctrlhyphenc message V_intrpt_msg()
change error handling G_set_error_routine()
change raster map title G_put_cell_title()
change to hardware color D_lookup_colors()
return interruptchar G_intr_char()
printable version of controlcharacter G_unctrl()
check for legal database file names G_legal_filename()
create a protectedchild process G_fork()
choose font R_font()
clear frame display lists D_clear_window()
clears information about current frame D_clear_window()
clip coordinates to window D_clip()
set textclipping frame R_set_window()
setclipping window D_set_clip_window()
setclipping window to map window D_set_clip_window_to_map_window()
close a raster file G_close_cell()
close a vector map Vect_close()
draw aclosed polygon R_polygon_abs()
draw aclosed polygon R_polygon_rel()
find which arc point isclosest to dig_point_to_line()
change to hardwarecolor D_lookup_colors()

461

A Appendix

get a categorycolor G_get_color()
set a categorycolor G_set_color()
selectcolor R_color()
define singlecolor R_reset_color()
selectcolor R_RGB_color()
select standardcolor R_standard_color()
select rastercolor for line D_color()
color name to number D_translate_color()
makecolor ramp G_make_ramp_colors()
getcolor range G_get_color_range()
initializecolor structure G_init_colors()
freecolor structure memory G_free_colors()
read map layercolor table G_read_colors()
write map layercolor table G_write_colors()
select fixedcolor table R_color_table_fixed()
select floatingcolor table R_color_table_float()
reset rastercolor value D_reset_color()
makecolor wave G_make_wav e_colors()
verify a range ofcolors D_check_colormap_size()
setcolors G_add_color_rule()
lookup an array ofcolors G_lookup_colors()
make aspectcolors G_make_aspect_colors()
make greencommayellowcommaredcolors G_make_gyr_colors()
make histogramhyphenstretched greycolors G_make_histogram_eq_colors()
make rainbowcolors G_make_rainbow_colors()
make randomcolors G_make_random_colors()
make redcommayellowcommagreencolors G_make_ryg_colors()
define multiplecolors R_reset_colors()
establish rastercolors for graphics D_set_colors()
setcolors in driver D_reset_colors()
array to screenparenleftcolumnparenright D_a_to_d_col()
easting tocolumn G_easting_to_col()
column to easting G_col_to_easting()
number ofcolumns in active region G_window_cols()
run a shell levelcommand G_system()
parsecommand line G_parser()
command line helpslashusage message G_usage()
addcommand to frame display list D_add_to_list()
print percentcomplete messages G_percent()
concatenate strings G_strcat()
configure raster overlay mode D_set_overlay_mode()
configure rowio structure rowio_setup()
radius ofconformal tangent sphere G_radius_of_conformal_tangent_sphere()
define screenconstant V_const()
unset any vector readconstraints Vect_remove_constraints()
print warning message andcontinue G_warning()
printable version ofcontrol character G_unctrl()

462

A.13 Appendix M: Permuted Index for Library Subroutines

add newcontrol point I_new_control_point()
read groupcontrol points I_get_control_points()
write groupcontrol points I_put_control_points()
conversion to meters G_database_units_to_meters_factor()
initializeconversions D_do_conversions()
convert line_pnts structure to xy arrays Vect_copy_pnts_to_xy()
convert string to lower case G_tolcase()
convert string to upper case G_toucase()
convert xy arrays to line_pnts structure Vect_copy_xy_to_pnts()
area incoordinate units G_planimetric_polygon_area()
retrieve current framecoordinates D_get_screen_window()
plot line between latloncoordinates G_plot_line()
clipcoordinates to window D_clip()
copy Ref lists I_transfer_group_ref_file()
copy string to allocated memory G_store()
copy strings G_strcpy()
copy strings G_strncpy()
copy vector header struct data Vect_copy_head_data()
create a lock lock_file()
create a protected child process G_fork()
create new graphics frame D_new_window()
create new initialized line points structure Vect_new_line_struct()
allowctrlhyphenc V_intrpt_ok()
changectrlhyphenc message V_intrpt_msg()
get a line of input
parenleftdetectctrlhyphenzparenright

G_gets()

current date and time G_date()
clears information aboutcurrent frame D_clear_window()
erasecurrent frame D_erase_window()
outlinescurrent frame D_show_window()
retrievecurrent frame coordinates D_get_screen_window()
resetscurrent frame position D_reset_screen_window()
identifycurrent graphics frame D_get_cur_wind()
setcurrent graphics frame D_set_cur_wind()
movecurrent location R_move_abs()
movecurrent location R_move_rel()
current location directory G_location_path()
current location name G_location()
assignslashretrievecurrent map region D_check_map_window()
current mapset name G_mapset()
givecurrent time to frame D_timestamp()
meridional radius ofcurvature G_meridional_radius_of_curvature()
transverse radius ofcurvature G_transverse_radius_of_curvature()
copy vector header structdata Vect_copy_head_data()
adddata to cell stats G_update_cell_stats()
top leveldatabase directory G_gisdbase()
prompt for existingdatabase file G_ask_in_mapset()

463

A Appendix

prompt for newdatabase file G_ask_new()
prompt for existingdatabase file G_ask_old()
find adatabase file G_find_file()
open a newdatabase file G_fopen_new()
open a newdatabase file G_open_new()
remove adatabase file G_remove()
rename adatabase file G_rename()
open adatabase file for reading G_fopen_old()
open adatabase file for reading G_open_old()
open adatabase file for update G_fopen_append()
open adatabase file for update G_open_update()
check for legaldatabase file names G_legal_filename()
read thedatabase region G_get_window()
write thedatabase region G_put_window()
database units G_database_unit_name()
currentdate and time G_date()
deallocate line points structure Vect_destroy_line_struct()
set number ofdecimal places V_float_accuracy()
read thedefault region G_get_default_window()
define multiple colors R_reset_colors()
define screen constant V_const()
define screen question V_ques()
define single color R_reset_color()
getdefining points for area polygon Vect_get_area_points()
initialize screendescription V_clear()
get filedescriptor rowio_fileno()
get a line of inputparenleftdetect
ctrlhyphenzparenright

G_gets()

top level programdirectory G_gisbase()
top level databasedirectory G_gisdbase()
userquoterights homedirectory G_home()
current locationdirectory G_location_path()
force pending updates todisk rowio_flush()
flush pending updates todisk segment_flush()
add command to framedisplay list D_add_to_list()
add raster map name todisplay list D_set_cell_name()
clear framedisplay lists D_clear_window()
begin geodesicdistance G_begin_geodesic_distance()
geodesicdistance G_geodesic_distance()
geodesicdistance G_geodesic_distance_lon_to_lon()
begindistance calculations G_begin_distance_calculations()
distance in meters G_distance()
set geodesicdistance latone G_set_geodesic_distance_lat()
set geodesicdistance lattwo G_set_geodesic_distance_lat()
finddistance of point to line dig_check_dist()
does group existquestion I_find_group()
draw a series ofdots R_polydots_abs()

464

A.13 Appendix M: Permuted Index for Library Subroutines

draw a series ofdots R_polydots_rel()
ASCII easting todouble G_scan_easting()
ASCII northing todouble G_scan_northing()
ASCII resolution todouble G_scan_resolution()
draw a closed polygon R_polygon_abs()
draw a closed polygon R_polygon_rel()
draw a raster R_raster()
draw a raster R_RGB_raster()
draw a series of dots R_polydots_abs()
draw a series of dots R_polydots_rel()
draw an open polygon R_polyline_abs()
draw an open polygon R_polyline_rel()
draw line R_cont_abs()
draw line R_cont_rel()
set colors indriver D_reset_colors()
earth to array parenlefteastparenright D_u_to_a_col()
earth to array parenleftnorthparenright D_u_to_a_row()
earth to screen parenlefteastparenright D_u_to_d_col()
earth to screen parenleftnorthparenright D_u_to_d_row()
screen toearth parenleftxparenright D_d_to_u_col()
screen toearth parenleftyparenright D_d_to_u_row()
earth to arrayparenlefteastparenright D_u_to_a_col()
earth to screenparenlefteastparenright D_u_to_d_col()
returnseast larger than west G_adjust_easting()
adjusteast longitude G_adjust_east_longitude()
column toeasting G_col_to_easting()
easting to ASCII G_format_easting()
easting to column G_easting_to_col()
ASCIIeasting to double G_scan_easting()
shortest way betweeneastings G_shortest_way()
xcommay toeastcommanorth G_plot_where_en()
eastcommanorth to xcommay G_plot_where_xy()
screen leftedge R_screen_left()
screen rightedge R_screen_rite()
begin area calculations forellipsoid G_begin_zone_area_on_ellipsoid()
getellipsoid by name G_get_ellipsoid_by_name()
getellipsoid parameters G_get_ellipsoid_parameters()
returnellopsoid name G_ellipsoid_name()
query GRASSenvironment variable G_ _getenv()
query GRASSenvironment variable G_getenv()
set GRASSenvironment variable G_ _setenv()
set GRASSenvironment variable G_setenv()
erase current frame D_erase_window()
erase screen R_erase()
sleep onerrorquestion G_sleep_on_error()
changeerror handling G_set_error_routine()
reset normalerror handling G_unset_error_routine()

465

A Appendix

printerror message and exit G_fatal_error()
establish raster colors for graphics D_set_colors()
does groupexistquestion I_find_group()
prompt forexisting database file G_ask_in_mapset()
prompt forexisting database file G_ask_old()
prompt for anexisting group I_ask_group_old()
prompt forexisting raster file G_ask_cell_in_mapset()
prompt forexisting raster file G_ask_cell_old()
open anexisting raster file G_open_cell_old()
prompt forexisting site list file G_ask_sites_in_mapset()
prompt forexisting site list file G_ask_sites_old()
open anexisting site list file G_fopen_sites_old()
prompt for anexisting vector file G_ask_vector_in_mapset()
prompt for anexisting vector file G_ask_vector_old()
open anexisting vector file G_fopen_vector_old()
openexisting vector map Vect_open_old()
print error message andexit G_fatal_error()
get textextents R_get_text_box()
plotfparenlefteastoneparenright to
fparenlefteasttwoparenright

G_plot_fx()

plot fparenlefteastoneparenright
tofparenlefteasttwoparenright

G_plot_fx()

prompt for existing rasterfile G_ask_cell_in_mapset()
prompt for new rasterfile G_ask_cell_new()
prompt for existing rasterfile G_ask_cell_old()
prompt for existing databasefile G_ask_in_mapset()
prompt for new databasefile G_ask_new()
prompt for existing databasefile G_ask_old()
prompt for existing site listfile G_ask_sites_in_mapset()
prompt for new site listfile G_ask_sites_new()
prompt for existing site listfile G_ask_sites_old()
prompt for an existing vectorfile G_ask_vector_in_mapset()
prompt for a new vectorfile G_ask_vector_new()
prompt for an existing vectorfile G_ask_vector_old()
close a rasterfile G_close_cell()
find a rasterfile G_find_cell()
find a databasefile G_find_file()
find a vectorfile G_find_vector()
find a vectorfile G_find_vector()
open a new databasefile G_fopen_new()
open a new site listfile G_fopen_sites_new()
open an existing site listfile G_fopen_sites_old()
open a new vectorfile G_fopen_vector_new()
open an existing vectorfile G_fopen_vector_old()
read a rasterfile G_get_map_row()
read site listfile G_get_site()
reclassfilequestion G_is_reclass()

466

A.13 Appendix M: Permuted Index for Library Subroutines

open an existing rasterfile G_open_cell_old()
open a new databasefile G_open_new()
write site listfile G_put_site()
read raster categoryfile G_read_cats()
read raster historyfile G_read_history()
read vector categoryfile G_read_vector_cats()
remove a databasefile G_remove()
rename a databasefile G_rename()
unopen a rasterfile G_unopen_cell()
write raster categoryfile G_write_cats()
write raster historyfile G_write_history()
write raster rangefile G_write_range()
write vector categoryfile G_write_vector_cats()
read group REFfile I_get_group_ref()
read subgroup REFfile I_get_subgroup_ref()
write group REFfile I_put_group_ref()
write subgroup REFfile I_put_subgroup_ref()
format a segmentfile segment_format()
get value from segmentfile segment_get()
read row from segmentfile segment_get_row()
put value to segmentfile segment_put()
write row to segmentfile segment_put_row()
getfile descriptor rowio_fileno()
open a databasefile for reading G_fopen_old()
open a databasefile for reading G_open_old()
open a databasefile for update G_fopen_append()
open a databasefile for update G_open_update()
prompt for any validfile name G_ask_any()
fully qualifiedfile name G_fully_qualified_name()
returns a temporaryfile name G_tempfile()
addfile name to Ref structure I_add_file_to_group_ref()
check for legal databasefile names G_legal_filename()
open a new rasterfile parenleftrandomparenright G_open_cell_new_random()
write a rasterfile parenleftrandomparenright G_put_map_row_random()
open a new rasterfile
parenleftsequentialparenright

G_open_cell_new()

write a rasterfile parenleftsequentialparenright G_put_map_row()
open a new rasterfile
parenleftuncompressedparenright

G_open_cell_new_uncompressed()

read a rasterfile parenleftwithout
maskingparenright

G_get_map_row_nomask()

fill a box R_box_abs()
fill a box R_box_rel()
plotfilled polygon with n vertices G_plot_polygon()
find a database file G_find_file()
find a raster file G_find_cell()
find a vector file G_find_vector()

467

A Appendix

find a vector file G_find_vector()
find distance of point to line dig_check_dist()
find which arc point is closest to dig_point_to_line()
find which area point is in dig_point_to_area()
selectfixed color table R_color_table_fixed()
returnFlag structure G_define_flag()
selectfloating color table R_color_table_float()
flush graphics R_flush()
flush pending updates to disk segment_flush()
choosefont R_font()
force pending updates to disk rowio_flush()
forget a row rowio_forget()
format a segment file segment_format()
clears information about currentframe D_clear_window()
erase currentframe D_erase_window()
identify current graphicsframe D_get_cur_wind()
create new graphicsframe D_new_window()
remove aframe D_remove_window()
set current graphicsframe D_set_cur_wind()
initializeslashcreate aframe D_setup()
outlines currentframe D_show_window()
give current time toframe D_timestamp()
set text clippingframe R_set_window()
retrieve currentframe coordinates D_get_screen_window()
add command toframe display list D_add_to_list()
clearframe display lists D_clear_window()
resets currentframe position D_reset_screen_window()
graphicsframe setup D_setup()
free allocated memory rowio_release()
free allocated memory segment_release()
free category structure memory G_free_cats()
free cell stats G_free_cell_stats()
free color structure memory G_free_colors()
free Ref structure I_free_group_ref()
fully qualified file name G_fully_qualified_name()
begingeodesic distance G_begin_geodesic_distance()
geodesic distance G_geodesic_distance()
geodesic distance G_geodesic_distance_lon_to_lon()
setgeodesic distance latone G_set_geodesic_distance_lat()
setgeodesic distance lattwo G_set_geodesic_distance_lat()
initializegis library G_gisinit()
give current time to frame D_timestamp()
prepare for rastergraphics D_cell_draw_setup()
establish raster colors forgraphics D_set_colors()
terminategraphics R_close_driver()
flushgraphics R_flush()
initializegraphics R_open_driver()

468

A.13 Appendix M: Permuted Index for Library Subroutines

initializegraphics R_set_RGB_color()
synchronizegraphics R_stabilize()
identify currentgraphics frame D_get_cur_wind()
create newgraphics frame D_new_window()
set currentgraphics frame D_set_cur_wind()
graphics frame setup D_setup()
queryGRASS environment variable G_ _getenv()
queryGRASS environment variable G_getenv()
setGRASS environment variable G_ _setenv()
setGRASS environment variable G_setenv()
makegreencommayellowcommared colors G_make_gyr_colors()
make histogramhyphenstretchedgrey colors G_make_histogram_eq_colors()
make lineargrey scale G_make_grey_scale_colors()
prompt for newgroup I_ask_group_new()
prompt for an existinggroup I_ask_group_old()
readgroup control points I_get_control_points()
writegroup control points I_put_control_points()
doesgroup existquestion I_find_group()
prompt for any validgroup name I_ask_group_any()
readgroup REF file I_get_group_ref()
writegroup REF file I_put_group_ref()
change errorhandling G_set_error_routine()
reset normal errorhandling G_unset_error_routine()
change tohardware color D_lookup_colors()
adjust cellheader G_adjust_Cell_head()
read the rasterheader G_get_cellhd()
write the rasterheader G_put_cellhd()
printheader info to stdout Vect_print_header()
copy vectorheader struct data Vect_copy_head_data()
command linehelpslashusage message G_usage()
makehistogramhyphenstretched grey colors G_make_histogram_eq_colors()
read rasterhistory file G_read_history()
write rasterhistory file G_write_history()
initializehistory structure G_short_history()
getHit RETURN msg G_get_ask_return_msg()
setHit RETURN msg G_set_ask_return_msg()
userquoterightshome directory G_home()
get area info fromid Vtwo_get_area()
read vector arc by specifying lineid Vtwo_read_line()
identify current graphics frame D_get_cur_wind()
get areainfo from id Vtwo_get_area()
print headerinfo to stdout Vect_print_header()
read targetinformation I_get_target()
write targetinformation I_put_target()
clearsinformation about current frame D_clear_window()
initialize calculations for sphere G_begin_zone_area_on_sphere()
initialize category structure G_init_cats()

469

A Appendix

initialize cell stats G_init_cell_stats()
initialize color structure G_init_colors()
initialize conversions D_do_conversions()
initialize gis library G_gisinit()
initialize graphics R_open_driver()
initialize graphics R_set_RGB_color()
initialize history structure G_short_history()
initialize plotting routines G_setup_plot()
initialize range structure G_init_range()
initialize Ref structure I_init_group_ref()
initialize screen description V_clear()
initialize segment structure segment_init()
initializeslashcreate a frame D_setup()
create newinitialized line points structure Vect_new_line_struct()
get a line ofinput parenleftdetect
ctrlhyphenzparenright

G_gets()

interact with the user V_call()
turns offinteractive capability G_disable_interactive()
returninterrupt char G_intr_char()
get a categorylabel G_get_cat()
set a categorylabel G_set_cat()
returns eastlarger than west G_adjust_easting()
set geodesic distancelatone G_set_geodesic_distance_lat()
set geodesic distancelattwo G_set_geodesic_distance_lat()
area betweenlatitudes G_area_for_zone_on_ellipsoid()
area betweenlatitudes G_area_for_zone_on_sphere()
plot line betweenlatlon coordinates G_plot_line()
area oflathyphenlong polygon G_ellipsoid_polygon_area()
read maplayer color table G_read_colors()
write maplayer color table G_write_colors()
removeleadingslashtraining white G_strip()
screenleft edge R_screen_left()
check forlegal database file names G_legal_filename()
run a shelllevel command G_system()
toplevel database directory G_gisdbase()
specifylevel for opening map Vect_set_open_level()
get openlevel of vector map Vect_level()
toplevel module directory G_gisbase()
lowlevel raster plotting D_raster()
initialize gislibrary G_gisinit()
select raster color forline D_color()
find distance of point toline dig_check_dist()
parse commandline G_parser()
drawline R_cont_abs()
drawline R_cont_rel()
get mouse location using aline R_get_location_with_line()
read next vectorline Vect_read_next_line()

470

A.13 Appendix M: Permuted Index for Library Subroutines

Bresenhamline algorithm G_bresenham_line()
plotline between latlon coordinates G_plot_line()
commandline helpslashusage message G_usage()
read vector arc by specifyingline id Vtwo_read_line()
get aline of input parenleftdetect
ctrlhyphenzparenright

G_gets()

addline of text to screen V_line()
create new initializedline points structure Vect_new_line_struct()
deallocateline points structure Vect_destroy_line_struct()
line to xcommay D_cont_abs()
line to xcommay D_cont_rel()
makelinear grey scale G_make_grey_scale_colors()
convert xy arrays toline_pnts structure Vect_copy_xy_to_pnts()
convertline_pnts structure to xy arrays Vect_copy_pnts_to_xy()
add command to frame displaylist D_add_to_list()
add raster map name to displaylist D_set_cell_name()
prompt for existing sitelist file G_ask_sites_in_mapset()
prompt for new sitelist file G_ask_sites_new()
prompt for existing sitelist file G_ask_sites_old()
open a new sitelist file G_fopen_sites_new()
open an existing sitelist file G_fopen_sites_old()
read sitelist file G_get_site()
write sitelist file G_put_site()
clear frame displaylists D_clear_window()
copy Reflists I_transfer_group_ref_file()
move currentlocation R_move_abs()
move currentlocation R_move_rel()
currentlocation directory G_location_path()
currentlocation name G_location()
location title G_myname()
get mouselocation using a box R_get_location_with_box()
get mouselocation using a line R_get_location_with_line()
get mouselocation using pointer R_get_location_with_pointer()
create alock lock_file()
remove alock unlock_file()
adjust eastlongitude G_adjust_east_longitude()
lookup an array of colors G_lookup_colors()
low lev el raster plotting D_raster()
convert string tolower case G_tolcase()
get number of areas in vectormap Vtwo_num_areas()
get number of arcs in vectormap Vtwo_num_lines()
close a vectormap Vect_close()
get open level of vectormap Vect_level()
open new vectormap Vect_open_new()
open existing vectormap Vect_open_old()
specify level for openingmap Vect_set_open_level()
write out arc to vectormap Vect_write_line()

471

A Appendix

rewind vectormap for rehyphenreading Vect_rewind()
readmap layer color table G_read_colors()
writemap layer color table G_write_colors()
retrieve rastermap name D_get_cell_name()
add rastermap name to display list D_set_cell_name()
assignslashretrieve currentmap region D_check_map_window()
get rastermap title G_get_cell_title()
change rastermap title G_put_cell_title()
set clipping window tomap window D_set_clip_window_to_map_window()
currentmapset name G_mapset()
read a raster file
parenleftwithoutmaskingparenright

G_get_map_row_nomask()

get range min andmax G_get_range_min_max()
free category structurememory G_free_cats()
free color structurememory G_free_colors()
copy string to allocatedmemory G_store()
free allocatedmemory rowio_release()
free allocatedmemory segment_release()
memory allocation G_calloc()
memory allocation G_malloc()
memory allocation G_realloc()
pophyphenupmenu D_popup()
meridional radius of curvature G_meridional_radius_of_curvature()
command line helpslashusagemessage G_usage()
change ctrlhyphencmessage V_intrpt_msg()
print warningmessage and continue G_warning()
print errormessage and exit G_fatal_error()
print percent completemessages G_percent()
conversion tometers G_database_units_to_meters_factor()
distance inmeters G_distance()
area in squaremeters of polygon G_area_of_polygon()
get rangemin and max G_get_range_min_max()
configure raster overlaymode D_set_overlay_mode()
getmouse location using a box R_get_location_with_box()
getmouse location using a line R_get_location_with_line()
getmouse location using pointer R_get_location_with_pointer()
move current location R_move_abs()
move current location R_move_rel()
move to pixel D_move_abs()
move to pixel D_move_rel()
get Hit RETURNmsg G_get_ask_return_msg()
set Hit RETURNmsg G_set_ask_return_msg()
definemultiple colors R_reset_colors()
plot filled polygon withn vertices G_plot_polygon()
retrieve raster mapname D_get_cell_name()
prompt for any valid filename G_ask_any()
return ellopsoidname G_ellipsoid_name()

472

A.13 Appendix M: Permuted Index for Library Subroutines

fully qualified filename G_fully_qualified_name()
get ellipsoid byname G_get_ellipsoid_by_name()
current locationname G_location()
current mapsetname G_mapset()
return programname G_program_name()
returns a temporary filename G_tempfile()
userquoterightsname G_whoami()
prompt for any valid groupname I_ask_group_any()
add raster mapname to display list D_set_cell_name()
colorname to number D_translate_color()
add filename to Ref structure I_add_file_to_group_ref()
check for legal database filenames G_legal_filename()
readnext vector line Vect_read_next_line()
resetnormal error handling G_unset_error_routine()
earth to arrayparenleftnorthparenright D_u_to_a_row()
earth to screenparenleftnorthparenright D_u_to_d_row()
row tonorthing G_row_to_northing()
northing to ASCII G_format_northing()
ASCIInorthing to double G_scan_northing()
northing to row G_northing_to_row()
color name tonumber D_translate_color()
get attributenumber of arc Vtwo_line_att()
getnumber of arcs in vector map Vtwo_num_lines()
get attributenumber of area Vtwo_area_att()
getnumber of areas in vector map Vtwo_num_areas()
number of columns in active region G_window_cols()
setnumber of decimal places V_float_accuracy()
number of rows in active region G_window_rows()
read vector arc by specifyingoffset Vone_read_line()
open a database file for reading G_fopen_old()
open a database file for reading G_open_old()
open a database file for update G_fopen_append()
open a database file for update G_open_update()
open a new database file G_fopen_new()
open a new database file G_open_new()
open a new raster file parenleftrandomparenright G_open_cell_new_random()
open a new raster file
parenleftsequentialparenright

G_open_cell_new()

open a new raster file
parenleftuncompressedparenright

G_open_cell_new_uncompressed()

open a new site list file G_fopen_sites_new()
open a new vector file G_fopen_vector_new()
open an existing raster file G_open_cell_old()
open an existing site list file G_fopen_sites_old()
open an existing vector file G_fopen_vector_old()
open existing vector map Vect_open_old()
getopen level of vector map Vect_level()

473

A Appendix

open new vector map Vect_open_new()
draw anopen polygon R_polyline_abs()
draw anopen polygon R_polyline_rel()
specify level foropening map Vect_set_open_level()
returnsOption structure G_define_option()
outlines current frame D_show_window()
configure rasteroverlay mode D_set_overlay_mode()
get ellipsoidparameters G_get_ellipsoid_parameters()
parse command line G_parser()
forcepending updates to disk rowio_flush()
flushpending updates to disk segment_flush()
printpercent complete messages G_percent()
move topixel D_move_abs()
move topixel D_move_rel()
set number of decimalplaces V_float_accuracy()
plot fparenlefteastoneparenright to
fparenlefteasttwoparenright

G_plot_fx()

plot filled polygon with n vertices G_plot_polygon()
plot line between latlon coordinates G_plot_line()
low lev el rasterplotting D_raster()
initializeplotting routines G_setup_plot()
add new controlpoint I_new_control_point()
ispoint in areaquestion dig_point_in_area()
find which arcpoint is closest to dig_point_to_line()
find which areapoint is in dig_point_to_area()
find distance ofpoint to line dig_check_dist()
get mouse location usingpointer R_get_location_with_pointer()
read group controlpoints I_get_control_points()
write group controlpoints I_put_control_points()
get definingpoints for area polygon Vect_get_area_points()
create new initialized linepoints structure Vect_new_line_struct()
deallocate linepoints structure Vect_destroy_line_struct()
pole in polygon G_pole_in_polygon()
area in square meters ofpolygon G_area_of_polygon()
area of lathyphenlongpolygon G_ellipsoid_polygon_area()
pole inpolygon G_pole_in_polygon()
draw a closedpolygon R_polygon_abs()
draw a closedpolygon R_polygon_rel()
draw an openpolygon R_polyline_abs()
draw an openpolygon R_polyline_rel()
get defining points for areapolygon Vect_get_area_points()
beginpolygon area calculations G_begin_polygon_area_calculations()
plot filledpolygon with n vertices G_plot_polygon()
pophyphenup menu D_popup()
resets current frameposition D_reset_screen_window()
prepare for raster graphics D_cell_draw_setup()
print error message and exit G_fatal_error()

474

A.13 Appendix M: Permuted Index for Library Subroutines

print header info to stdout Vect_print_header()
print percent complete messages G_percent()
print warning message and continue G_warning()
printable version of control character G_unctrl()
create a protected childprocess G_fork()
top levelprogram directory G_gisbase()
returnprogram name G_program_name()
query cartographicprojection G_database_projection_name()
query cartographicprojection G_projection()
prompt for a new vector file G_ask_vector_new()
prompt for an existing group I_ask_group_old()
prompt for an existing vector file G_ask_vector_in_mapset()
prompt for an existing vector file G_ask_vector_old()
prompt for any valid file name G_ask_any()
prompt for any valid group name I_ask_group_any()
prompt for existing database file G_ask_in_mapset()
prompt for existing database file G_ask_old()
prompt for existing raster file G_ask_cell_in_mapset()
prompt for existing raster file G_ask_cell_old()
prompt for existing site list file G_ask_sites_in_mapset()
prompt for existing site list file G_ask_sites_old()
prompt for new database file G_ask_new()
prompt for new group I_ask_group_new()
prompt for new raster file G_ask_cell_new()
prompt for new site list file G_ask_sites_new()
create aprotected child process G_fork()
put value to segment file segment_put()
fullyqualified file name G_fully_qualified_name()
query cartographic projection G_database_projection_name()
query cartographic projection G_projection()
query cartographic zone G_zone()
query GRASS environment variable G_ _getenv()
query GRASS environment variable G_getenv()
randomquery of cell stats G_find_cell_stat()
ask a yesslashnoquestion G_yes()
define screenquestion V_ques()
radius of conformal tangent sphere G_radius_of_conformal_tangent_sphere()
meridionalradius of curvature G_meridional_radius_of_curvature()
transverseradius of curvature G_transverse_radius_of_curvature()
makerainbow colors G_make_rainbow_colors()
make colorramp G_make_ramp_colors()
open a new raster fileparenleftrandomparenright G_open_cell_new_random()
write a raster fileparenleftrandomparenright G_put_map_row_random()
makerandom colors G_make_random_colors()
random query of cell stats G_find_cell_stat()
get colorrange G_get_color_range()
read rasterrange G_read_range()

475

A Appendix

write rasterrange file G_write_range()
getrange min and max G_get_range_min_max()
verify arange of colors D_check_colormap_size()
initializerange structure G_init_range()
updaterange structure G_row_update_range()
updaterange structure G_update_range()
draw araster R_raster()
draw araster R_RGB_raster()
allocate araster buffer G_allocate_cell_buf()
zero araster buffer G_zero_cell_buf()
readraster category file G_read_cats()
writeraster category file G_write_cats()
selectraster color for line D_color()
resetraster color value D_reset_color()
establishraster colors for graphics D_set_colors()
prompt for existingraster file G_ask_cell_in_mapset()
prompt for newraster file G_ask_cell_new()
prompt for existingraster file G_ask_cell_old()
close araster file G_close_cell()
find araster file G_find_cell()
read araster file G_get_map_row()
open an existingraster file G_open_cell_old()
unopen araster file G_unopen_cell()
open a newraster file parenleftrandomparenright G_open_cell_new_random()
write araster file parenleftrandomparenright G_put_map_row_random()
open a newraster file
parenleftsequentialparenright

G_open_cell_new()

write araster file parenleftsequentialparenright G_put_map_row()
open a newraster file
parenleftuncompressedparenright

G_open_cell_new_uncompressed()

read araster file parenleftwithout
maskingparenright

G_get_map_row_nomask()

prepare forraster graphics D_cell_draw_setup()
read theraster header G_get_cellhd()
write theraster header G_put_cellhd()
readraster history file G_read_history()
writeraster history file G_write_history()
retrieveraster map name D_get_cell_name()
addraster map name to display list D_set_cell_name()
getraster map title G_get_cell_title()
changeraster map title G_put_cell_title()
configureraster overlay mode D_set_overlay_mode()
low lev elraster plotting D_raster()
readraster range G_read_range()
writeraster range file G_write_range()
render araster row D_draw_cell()
specify types of arcs toread Vect_set_constraint_type()

476

A.13 Appendix M: Permuted Index for Library Subroutines

read a raster file G_get_map_row()
read a raster file parenleftwithout
maskingparenright

G_get_map_row_nomask()

read a row rowio_get()
unset any vectorread constraints Vect_remove_constraints()
read group control points I_get_control_points()
read group REF file I_get_group_ref()
read map layer color table G_read_colors()
read next vector line Vect_read_next_line()
read raster category file G_read_cats()
read raster history file G_read_history()
read raster range G_read_range()
read row from segment file segment_get_row()
read site list file G_get_site()
read subgroup REF file I_get_subgroup_ref()
read target information I_get_target()
read the database region G_get_window()
read the default region G_get_default_window()
read the raster header G_get_cellhd()
read vector arc by specifying line id Vtwo_read_line()
read vector arc by specifying offset Vone_read_line()
set restricted region toread vector arcs from Vect_set_constraint_region()
read vector category file G_read_vector_cats()
open a database file forreading G_fopen_old()
open a database file forreading G_open_old()
reclass filequestion G_is_reclass()
makeredcommayellowcommagreen colors G_make_ryg_colors()
read groupREF file I_get_group_ref()
read subgroupREF file I_get_subgroup_ref()
write groupREF file I_put_group_ref()
write subgroupREF file I_put_subgroup_ref()
copyRef lists I_transfer_group_ref_file()
add file name toRef structure I_add_file_to_group_ref()
freeRef structure I_free_group_ref()
initializeRef structure I_init_group_ref()
assignslashretrieve current mapregion D_check_map_window()
read the defaultregion G_get_default_window()
get the activeregion G_get_set_window()
read the databaseregion G_get_window()
write the databaseregion G_put_window()
set the activeregion G_set_window()
number of columns in activeregion G_window_cols()
number of rows in activeregion G_window_rows()
set restrictedregion to read vector arcs from Vect_set_constraint_region()
align tworegions G_align_window()
remove a database file G_remove()
remove a frame D_remove_window()

477

A Appendix

remove a lock unlock_file()
remove leadingslashtraining white G_strip()
remove unnecessary white G_squeeze()
rename a database file G_rename()
render a raster row D_draw_cell()
rewind vector map forrehyphenreading Vect_rewind()
reset normal error handling G_unset_error_routine()
reset raster color value D_reset_color()
resetslashrewind cell stats G_rewind_cell_stats()
resets current frame position D_reset_screen_window()
resolution to ASCII G_format_resolution()
ASCIIresolution to double G_scan_resolution()
setrestricted region to read vector arcs from Vect_set_constraint_region()
retrieve current frame coordinates D_get_screen_window()
retrieve raster map name D_get_cell_name()
retrieve sorted cell stats G_next_cell_stat()
return ellopsoid name G_ellipsoid_name()
return Flag structure G_define_flag()
return interrupt char G_intr_char()
get HitRETURN msg G_get_ask_return_msg()
set HitRETURN msg G_set_ask_return_msg()
return module name G_program_name()
returns a temporary file name G_tempfile()
returns east larger than west G_adjust_easting()
returns Option structure G_define_option()
rewind vector map for rehyphenreading Vect_rewind()
initialize plottingroutines G_setup_plot()
array to screenparenleftrowparenright D_a_to_d_row()
render a rasterrow D_draw_cell()
cell area in specifiedrow G_area_of_cell_at_row()
northing torow G_northing_to_row()
forget arow rowio_forget()
read arow rowio_get()
write arow rowio_put()
readrow from segment file segment_get_row()
row to northing G_row_to_northing()
writerow to segment file segment_put_row()
configurerowio structure rowio_setup()
number ofrows in active region G_window_rows()
run a shell level command G_system()
make linear greyscale G_make_grey_scale_colors()
erasescreen R_erase()
bottom ofscreen R_screen_bot()
top ofscreen R_screen_top()
add line of text toscreen V_line()
array toscreen parenleftcolumnparenright D_a_to_d_col()
definescreen constant V_const()

478

A.13 Appendix M: Permuted Index for Library Subroutines

initializescreen description V_clear()
earth toscreen parenlefteastparenright D_u_to_d_col()
screen left edge R_screen_left()
earth toscreen parenleftnorthparenright D_u_to_d_row()
definescreen question V_ques()
screen right edge graveR_screen_rite()
array toscreen parenleftrowparenright D_a_to_d_row()
screen to array parenleftxparenright D_d_to_a_col()
screen to array parenleftyparenright D_d_to_a_row()
screen to earth parenleftxparenright D_d_to_u_col()
screen to earth parenleftyparenright D_d_to_u_row()
format asegment file segment_format()
get value fromsegment file segment_get()
read row fromsegment file segment_get_row()
put value tosegment file segment_put()
write row tosegment file segment_put_row()
initializesegment structure segment_init()
select color R_color()
select color R_RGB_color()
select fixed color table R_color_table_fixed()
select floating color table R_color_table_float()
select raster color for line D_color()
select standard color R_standard_color()
open a new raster
fileparenleftsequentialparenright

G_open_cell_new()

write a raster fileparenleftsequentialparenright G_put_map_row()
draw aseries of dots R_polydots_abs()
draw aseries of dots R_polydots_rel()
set a category color G_set_color()
set a category label G_set_cat()
set clipping window D_set_clip_window()
set clipping window to map window D_set_clip_window_to_map_window()
set colors G_add_color_rule()
set colors in driver D_reset_colors()
set current graphics frame D_set_cur_wind()
set geodesic distance latone G_set_geodesic_distance_lat()
set geodesic distance lattwo G_set_geodesic_distance_lat()
set GRASS environment variable G_ _setenv()
set GRASS environment variable G_setenv()
set Hit RETURN msg G_set_ask_return_msg()
set number of decimal places V_float_accuracy()
set restricted region to read vector arcs from Vect_set_constraint_region()
set text clipping frame R_set_window()
set text size R_text_size()
set the active region G_set_window()
set title in category structure G_set_cats_title()
graphics framesetup D_setup()

479

A Appendix

run ashell level command G_system()
shortest way between eastings G_shortest_way()
definesingle color R_reset_color()
prompt for existingsite list file G_ask_sites_in_mapset()
prompt for newsite list file G_ask_sites_new()
prompt for existingsite list file G_ask_sites_old()
open a newsite list file G_fopen_sites_new()
open an existingsite list file G_fopen_sites_old()
readsite list file G_get_site()
writesite list file G_put_site()
set textsize R_text_size()
sleep on errorquestion G_sleep_on_error()
retrievesorted cell stats G_next_cell_stat()
remove unnecessary white G_squeeze()
remove leadingslashtraining white G_strip()
deallocate line points structure Vect_destroy_line_struct()
cell area inspecified row G_area_of_cell_at_row()
specify level for opening map Vect_set_open_level()
specify types of arcs to read Vect_set_constraint_type()
read vector arc byspecifying line id Vtwo_read_line()
read vector arc byspecifying offset Vone_read_line()
initialize calculations forsphere G_begin_zone_area_on_sphere()
radius of conformal tangentsphere G_radius_of_conformal_tangent_sphere()
area insquare meters of polygon G_area_of_polygon()
selectstandard color R_standard_color()
random query of cellstats G_find_cell_stat()
free cellstats G_free_cell_stats()
initialize cellstats G_init_cell_stats()
retrieve sorted cellstats G_next_cell_stat()
resetslashrewind cellstats G_rewind_cell_stats()
add data to cellstats G_update_cell_stats()
print header info tostdout Vect_print_header()
copystring to allocated memory G_store()
convertstring to lower case G_tolcase()
convertstring to upper case G_toucase()
concatenatestrings G_strcat()
copystrings G_strcpy()
copystrings G_strncpy()
copy vector headerstruct data Vect_copy_head_data()
return Flagstructure G_define_flag()
returns Optionstructure G_define_option()
get title from categorystructure G_get_cats_title()
initialize categorystructure G_init_cats()
initialize colorstructure G_init_colors()
initialize rangestructure G_init_range()
update rangestructure G_row_update_range()
set title in categorystructure G_set_cats_title()

480

A.13 Appendix M: Permuted Index for Library Subroutines

initialize historystructure G_short_history()
update rangestructure G_update_range()
add file name to Refstructure I_add_file_to_group_ref()
free Refstructure I_free_group_ref()
initialize Refstructure I_init_group_ref()
configure rowiostructure rowio_setup()
initialize segmentstructure segment_init()
convert xy arrays to line_pntsstructure Vect_copy_xy_to_pnts()
create new initialized line pointsstructure Vect_new_line_struct()
free categorystructure memory G_free_cats()
free colorstructure memory G_free_colors()

481

A Appendix

482

B Newindex

(See next page.)

483

Index

*CC_spheroid_name(int n), 305

C_get_spheroid_by_nbr(int n), 306
CC_datum_description(int n), 299
CC_datum_ellipsoid(int n), 299
CC_datum_name(int n), 298
CC_datum_shift(const char *name, double *dx,

double *dy, double *dz), 298
CC_datum_shift_BursaWolf(double Sphi, dou-

ble Slam, double Sh, double Sa, dou-
ble Se2, double *Dphi, double *Dlam,
double *Dh, double Da, double De2,
double dx, double dy, double dz, dou-
ble Rx, double Ry, double Rz, double
Scale), 301

CC_datum_shift_CC(double Sphi, double Slam,
double Sh, double Sa, double Se2, dou-
ble *Dphi, double *Dlam, double *Dh,
double Da, double De2, double dx,
double dy, double dz), 300

CC_datum_shift_Molodensky(doubleSphi, dou-
ble Slam, double Sh, double Sa, dou-
ble Se2, double rSf, double *Dphi, dou-
ble *Dlam, double *Dh, double Da,
double De2, double rDf, double dx,
double dy, double dz), 301

CC_datum_to_datum_shift_BW(intSdatum, dou-
ble Sphi, double Slam, double Sh, int
Ddatum, double *Dphi, double *Dlam,
double *Dh), 302

CC_datum_to_datum_shift_CC(intSdatum, dou-
ble Sphi, double Slam, double Sh, int
Ddatum, double *Dphi, double *Dlam,
double *Dh), 301

CC_datum_to_datum_shift_M(intSdatum, dou-
ble Sphi, double Slam, double Sh, int
Ddatum, double *Dphi, double *Dlam,
double *Dh), 301

CC_geo2ll(double a, double e2, double x, dou-
ble y, double z, double *lat, double
*lon, double *h, int n, double stop_delta),
304

CC_geo2lld(double a, double e2, double x, dou-
ble y, double z, double *lat, double
*lon, double *h), 304

CC_get_datum_by_name(const char *name), 299
CC_get_datum_by_nbr(int n), 299

CC_get_datum_parameters(const char *name, char
*ellps, double *dx, double *dy, dou-
ble *dz), 298

CC_get_spheroid(const char *name, double *a,
double *e2), 305

CC_get_spheroid_by_name(const char *name,
double *a, double *e2, double *f), 305

CC_lat_format(double lat, char *buf), 302
CC_lat_parts(double lat, int *deg, int *min, dou-

ble *sec, char *hemisphere), 303
CC_lat_scan(char *string, double *lat), 304
CC_ll2geo(double a, double e2, double lat, dou-

ble lon, double h, double *x, double
*y, double *z), 303

CC_ll2tm(double lat, double lon, double *east-
ing, double *northing, int *zone), 307

CC_ll2u(double lat, double lon, double *east-
ing, double *northing, int *zone), 308

CC_lld2geo(double a, double e2, double lat, dou-
ble lon, double h, double *x, double
*y, double *z), 303

CC_lon_format(double lon, char *buf), 302
CC_lon_parts(double lon, int *deg, int *min, dou-

ble *sec, char *hemisphere), 303
CC_lon_scan(char *string, double *lon), 304
CC_tm2ll(double easting, double *lat, double

*lon), 307
CC_tm2ll_north(double northing), 306
CC_tm2ll_spheroid(char *name), 306
CC_tm2ll_spheroid_parameters(double a, dou-

ble e2), 306
CC_tm2ll_zone(int zone), 306
CC_u2ll(double easting, double *lat, double *lon),

308
CC_u2ll_north(double northing), 308
CC_u2ll_spheroid(char *name), 307
CC_u2ll_spheroid_parameters(doublea, double

e2), 307
CC_u2ll_zone(int zone), 307

D_a_to_d_col (double column), 261
D_a_to_d_row (double row), 261
D_add_to_list (char *string), 258
D_cell_draw_setup (int top, int bottom, int left,

int right), 263
D_check_colormap_size (CELL min, CELL max,

int *ncolors), 262

484

Index

D_check_map_window(struct Cell_head *region),
257

D_clear_window (), 258, 259
D_clip (double s, double n, double w, double

e, double *x, double *y, double *c_x,
double *c_y), 265

D_color (CELL cat, struct Colors *colors), 263
D_color_of_type (void *value, struct Colors *col-

ors, RASTER_MAP_TYPE data_type),
140

D_cont_abs (int x, int y), 268
D_cont_rel (int x, int y), 268
D_d_color (DCELL *value, struct Colors *col-

ors), 141
D_d_raster (DCELL *dcell, int ncols, int nrows,

struct Colors *colors), 140
D_d_to_a_col (double x), 262
D_d_to_a_row (double y), 262
D_d_to_u_col (double x), 261
D_d_to_u_row (double y), 261
D_do_conversions (struct Cell_head *region, int

top, int bottom, int left, int right), 260
D_draw_cell (int row, CELL *raster, struct Col-

ors *colors), 263
D_draw_cell_of_type(int A_row, DCELL *xar-

ray, struct Colors *colors, RASTER_MAP_TYPE
map_type), 142

D_draw_d_cell (int A_row, DCELL *xarray, struct
Colors *colors), 142

D_draw_f_cell (int A_row, FCELL *xarray, struct
Colors *colors), 142

D_erase_window (), 258
D_f_color (FCELL *value, struct Colors *col-

ors), 140
D_f_raster (FCELL *fcell, int ncols, int nrows,

struct Colors *colors), 140
D_get_cell_name (char *name), 259
D_get_cur_wind (char *name), 257
D_get_dig_name (char *name), 259
D_get_screen_window (int *top, int *bottom,

int *left, int *right), 257
D_get_site_name (char *name), 259
D_lookup_c_raster_colors (CELL *cell, int *col-

ornum, int n, struct Colors *colors),
141

D_lookup_colors (CELL *data, int n, struct Col-
ors *colors), 262

D_lookup_d_raster_colors (DCELL *dcell, int
*colornum, int n, struct Colors *col-
ors), 141

D_lookup_f_raster_colors (FCELL *fcell, int *col-
ornum, int n, struct Colors *colors),
141

D_lookup_raster_colors (void *rast, int *color-
num, int n, struct Colors *colors, RASTER_MAP_TYPE
data_type), 141

D_move_abs (int x, int y), 268
D_move_rel (int x, int y), 268
D_new_window (char *name, int top, int bot-

tom, int left, int right), 256
D_popup (int bcolor, int tcolor, int dcolor, int

top, int left, int size, char *options[]),
265

D_raster (CELL *raster, int n, int repeat, struct
Colors *colors), 264

D_raster_of_type (void *rast, int ncols, int nrows,
struct Colors *colors, RASTER_MAP_TYPE
data_type), 140

D_remove_window (), 258
D_reset_color (CELL data, int r, int g, int b),

262
D_reset_colors (struct Colors *colors), 266
D_reset_screen_window (int top, int bottom, int

left, int right), 257
D_set_cell_name (char *name), 258
D_set_clip_window (int top, int bottom, int left,

int right), 267
D_set_clip_window_to_map_window (), 268
D_set_colors (struct Colors *colors), 263
D_set_cur_wind (char *name), 257
D_set_dig_name (char *name), 259
D_set_overlay_mode (int flag), 264
D_set_site_name (char *name), 259
D_setup (int clear), 255, 267
D_show_window (int color), 257
D_timestamp (), 258
D_translate_color (char *name), 266
D_u_to_a_col (double east), 260
D_u_to_a_row (double north), 260
D_u_to_d_col (double east), 261
D_u_to_d_row (double north), 261
datetime_change_from_to(DateTime *dt; int from,

to; int round), 352
datetime_change_timezone (DateTime *dt; int

minutes), 360
datetime_change_to_utc (DateTime *dt), 360
datetime_check_day (DateTime *dt, int day), 356
datetime_check_fracsec (DateTime *dt, int frac-

sec), 356
datetime_check_hour (DateTime *dt, int hour),

356
datetime_check_increment (DateTime *src, *incr),

358
datetime_check_minute (DateTime *dt, int minute),

356
datetime_check_month (DateTime *dt, int month),

356

485

Index

datetime_check_second (DateTime *dt, double
second), 356

datetime_check_timezone (DateTime *dt, int min-
utes), 360

datetime_check_type (DateTime *dt), 352
datetime_check_year (DateTime *dt, int year),

355
datetime_clear_error (), 362
datetime_copy (DateTime *dst, *src), 353
datetime_days_in_month (int month, year), 361
datetime_days_in_year (int year, ad), 361
datetime_decompose_timezone(int tz, int *hour,

int *minute), 361
datetime_difference (DateTime *a, *b, *result),

358
datetime_error (int code, char *msg), 362
datetime_format (DateTime *dt, char *string),

351
datetime_get_day (DateTime *dt, int *day), 355
datetime_get_error_code (), 362
datetime_get_error_msg (), 362
datetime_get_fracsec (DateTime *dt, int *frac-

sec), 355
datetime_get_hour (DateTime *dt, int *hour),

355
datetime_get_increment_type (DateTime *src; int

*mode, *from, *to, *fracsec), 359
datetime_get_local_time (DateTime *dt), 361
datetime_get_local_timezone(int *minutes), 361
datetime_get_minute (DateTime *dt, int *minute),

355
datetime_get_month (DateTime *dt, int *month),

354
datetime_get_second (DateTime *dt, double *sec-

ond), 355
datetime_get_timezone (DateTime *dt, int *min-

utes), 360
datetime_get_type (DateTime *dt; int *mode,

*from, *to, *fracsec), 352
datetime_get_year (DateTime *dt, int *year), 354
datetime_increment (DateTime *src, *incr), 357
datetime_invert_sign (DateTime *dt), 357
datetime_is_absolute (DateTime *dt), 353
datetime_is_leap_year (int year, ad), 361
datetime_is_positive (DateTime *dt), 357
datetime_is_relative (DateTime *dt), 353
datetime_is_same (DateTime *dt1, *dt2), 354
datetime_is_valid_increment (DateTime *src, *incr),

358
datetime_is_valid_timezone (int minutes), 360
datetime_is_valid_type (DateTime *dt), 352
datetime_scan (DateTime *dt, char *string), 351
datetime_set_day (DateTime *dt, int day), 354

datetime_set_fracsec (DateTime *dt, int fracsec),
355

datetime_set_hour (DateTime *dt, int hour), 355
datetime_set_increment_type (DateTime *src, *incr),

359
datetime_set_minute (DateTime *dt, int minute),

355
datetime_set_month (DateTime *dt, int month),

354
datetime_set_negative (DateTime *dt), 357
datetime_set_positive (DateTime *dt), 357
datetime_set_second (DateTime *dt, double sec-

ond), 355
datetime_set_timezone (DateTime *dt, int min-

utes), 360
datetime_set_type (DateTime *dt; int mode, from,

to, fracsec), 351
datetime_set_year (DateTime *dt, int year), 354
datetime_unset_timezone (DateTime *dt), 360
Dcell(), 135
dig_check_dist (struct Map_info *Map, intn, dou-

ble x, double y, double *d), 230
dig_point_in_area (struct Map_info *Map, dou-

ble x, double y, P_AREA *pa), 230
dig_point_to_area (struct Map_info *Map, dou-

ble x, double y), 230
dig_point_to_line (struct Map_info *Map, dou-

ble x, double y, char type), 230

ENDIAN, 206

G3d_adjustRegion (G3D_Region *region), 342
G3d_adjustRegionRes (G3D_Region *region),

342
G3d_allocTiles (void *map, int nofTiles), 331
G3d_allocTilesType (void *map, int nofTiles,

int type), 331
G3d_autolockOff (void *map), 329
G3d_autolockOn (void *map), 329
G3d_beginCycle (void *map), 329
G3d_cacheSizeEncode (int cacheCode, int n),

330
G3d_changePrecision (void *map, int precision,

char *nameOut), 345
G3d_changeType (void *map, char *nameOut),

345
G3d_closeCell (void *map), 323
G3d_compareFiles (char *f1, char *mapset1, char

*f2, char *mapset2), 345
G3d_computeClippedTileDimensions (void *map,

int tileIndex, int *rows, int *cols, int
*depths, int *xRedundant, int *yRe-
dundant, int *zRedundant), 335

486

Index

G3d_coord2tileCoord (void *map, int x, int y,
int z, int *xTile, int *yTile, int *zTile,
int *xOffs, int *yOffs, int *zOffs), 334

G3d_coord2tileIndex (void *map, int x, int y,
int z, int *tileIndex, int *offset), 335

G3d_coordInRange (void *map, int x, int y, int
z), 335

G3d_customResampleFun (void *map, int row,
int col, int depth, char *value, int type),
341

G3d_endCycle (void *map), 329
G3d_extract2dRegion(G3D_Region *region3d,

struct Cell_head *region2d), 342
G3d_fatalError (char (*msg)(char *)), 321
G3d_filename (char *path, *elementName, *map-

Name, *mapset), 344
G3d_fileTypeMap (void *map), 333
G3d_flushTile (void *map, int tileIndex), 327
G3d_flushTileCube (void *map, int xMin, int

yMin, int zMin, int xMax, int yMax,
int zMax), 328

G3d_flushTilesInCube (void *map, int xMin, int
yMin, int zMin, int xMax, int yMax,
int zMax), 328

G3d_free (void *ptr), 331
G3d_freeTiles (char *tiles), 331
G3d_g3dType2cellType (int g3dType), 343
G3d_getAllignedVolume (void *map, double orig-

inNorth, double originWest, double orig-
inBottom, double lengthNorth, dou-
ble lengthWest, double lengthBottom,
int nx, int ny, int nz, char *volume-
Buf, int type), 330

G3d_getBlock (void *map, int x0, int y0, int z0,
int nx, int ny, int nz, char *block, int
type, 345

G3d_getCacheLimit (int nBytes), 317
G3d_getCacheSize (), 318
G3d_getCompressionMode (int *doCompress,

int *doLzw, int *doRle, int *precision),
319

G3d_getCoordsMap (void *map, int *rows, int
*cols, int *depths), 332

G3d_getDouble (void *map, int x, int y, int z),
324

G3d_getDoubleRegion (void *map, int x, int y,
int z), 325

G3d_getFileType (int type), 320
G3d_getFloat (void *map, int x, int y, int z), 324
G3d_getFloatRegion (void *map, int x, int y, int

z), 325
G3d_getNearestNeighborFunPtr (void (**nnFunPtr)

()), 342

G3d_getNofTilesMap (void *map, int *nx, int
*ny, int *nz), 333

G3d_getRegionMap (void *map, int *north, int
*south, int *east, int *west, int *top,
int *bottom), 332

G3d_getRegionStructMap (void *map, G3D_Region
*region), 333

G3d_getRegionValue (void *map, double north,
double east, double top, char *value,
int type), 343

G3d_getResamplingFun (void *map, void (**re-
sampleFun) ()), 341

G3d_getStandard3dInputParams (int *useType-
Default, *type, *useLzwDefault, *doLzw,
int *useRleDefault, *doRle, *usePre-
cisionDefault, *precision, int *useDi-
mensionDefault, *tileX, *tileY, *tileZ,
344

G3d_getTileDimension (int *tileX, int *tileY, int
*tileZ), 319

G3d_getTileDimensionsMap (void *map, int *x,
int *y, int *z), 333

G3d_getTilePtr (void *map, int tileIndex), 326
G3d_getValue (), 313
G3d_getValue (void *map, int x, int y, int z,

char *value, int type), 324
G3d_getValueRegion (void *map, int x, int y,

int z, char*value, int type), 325
G3d_getVolume (void *map, double originNorth,

double originWest, double originBot-
tom, double vxNorth, double vxWest,
double vxBottom, double vyNorth, dou-
ble vyWest, double vyBottom, dou-
ble vzNorth, double vzWest, double
vzBottom, int nx, int ny, int nz, char
*volumeBuf, int type), 330

G3d_getWindow (G3D_Region *window), 340
G3d_incorporate2dRegion(struct Cell_head *re-

gion2d, G3D_Region *region3d), 342
G3d_initDefaults (), 343
G3d_isMasked (int x, int y, int z), 339
G3d_isNullValueNum (void *n, int type), 332
G3d_isValidLocation (void *map, double north,

double west, double bottom), 335
G3d_location2coord (void *map, double north,

double west, double bottom, int *x,
*y, *z), 335

G3d_lockTile (void *map, int tileIndex), 328
G3d_makeMapsetMapDirectory (char *mapName),

344
G3d_malloc (int nBytes), 331
G3d_maskDouble (int x, int y, int z, double *value),

339
G3d_maskFile (), 339

487

Index

G3d_maskFileExists (), 338
G3d_maskFloat (int x, int y, int z, float *value),

339
G3d_maskIsOff (void *map), 338
G3d_maskIsOn (void *map), 338
G3d_maskMapExists (), 339
G3d_maskNum (int x, int y, int z, void *value,

int type), 339
G3d_maskOff (void *map), 338
G3d_maskOn (void *map), 338
G3d_maskReopen (int cache), 338
G3d_maskTile (void *map, int tileIndex, char

*tile, int type), 339
G3d_minUnlocked (void *map, int minUnlocked),

329
G3d_nearestNeighbor (void *map, int row, int

col, int depth, char *value, int type),
341

G3d_openCellNew (char *name, int type, int
cache, G3D_Region *region), 322

G3d_openCellNewParam (char *name, int type-
Intern, int cache, G3D_Region *region,
int type, int doLzw, int doRle, int pre-
cision, int tileX, int tileY, int tileZ),
322

G3d_openCellOld (char *name, char *mapset,
G3D_Region *window, int type, int
cache), 321

G3d_printError (char (*msg)(char *)), 321
G3d_printHeader (void *map), 334
G3d_putDouble (void *map, int x, int y, int z,

char *value), 326
G3d_putFloat (void *map, int x, int y, int z, char

*value), 325
G3d_putValue (), 313
G3d_putValue (void *map, int x, int y, int z,

char *value, int type), 325
G3d_range_load (void *map), 336
G3d_range_min_max(void *map, double *min,

double *max), 336
G3d_range_write (void *map), 336
G3d_readCats (char *name, char *mapset, struct

Categories *pcats, 337
G3d_readColors (char *name, char *mapset, struct

Colors *colors), 337
G3d_readRegionMap (char *name, char *mapset,

G3D_Region *region), 343
G3d_readTile (), 313
G3d_readTile (void *map, char *tileIndex, int

tile, int type), 323
G3d_readTileDouble (void *map, char *tileIn-

dex, int tile), 323
G3d_readTileFloat (void *map, char *tileIndex,

int tile), 323

G3d_readWindow (G3D_Region *window, char
*windowName), 340

G3d_realloc (void *ptr, int nBytes), 331
G3d_regionCopy (G3D_Region *regionDest, G3D_Region

*regionSrc), 342
G3d_removeColor (char *name), 336
G3d_removeTile (void *map, inttileIndex), 327
G3d_retile (void *map, char *nameOut, int tileX,

int tileY, int tileZ), 344
G3d_setCacheLimit (int nBytes), 317
G3d_setCacheSize (int nTiles), 318
G3d_setCompressionMode (int doCompress, int

doLzw, int doRle, int precision), 319
G3d_setErrorFun (void (*fun)(char *)), 321
G3d_setFileType (int type), 320
G3d_setNullTile (void *map, int tile), 332
G3d_setNullTileType (void *map, int tile, int

type), 332
G3d_setNullValue (void *c, int nofElts, int type),

332
G3d_setResamplingFun (void *map, void (*re-

sampleFun)()), 341
G3d_setStandard3dInputParams (), 343
G3d_setTileDimension (int tileX, int tileY, int

tileZ), 319
G3d_setUnit (unit) char *unit;, 320
G3d_setWindow (G3D_Region *window), 340
G3d_setWindowMap (void *map, G3D_Region

*window), 340
G3d_skipError (char (*msg)(char *)), 321
G3d_tile2tileIndex (void *map, int xTile, int yTile,

int zTile), 334
G3d_tileCoordOrigin (void *map, int xTile, int

yTile, int zTile, int *x, int *y, int *z),
334

G3d_tileIndex2tile (void *map, int tileIndex, int
*xTile, int *yTile, int *zTile), 334

G3d_tileIndexInRange (void *map, int tileIndex),
335

G3d_tileIndexOrigin (void *map, int tileIndex,
int *x, int *y, int *z), 334

G3d_tileInRange (void *map, int x, int y, int z),
335

G3d_tileLoad (void *map, int tileIndex), 327
G3d_tilePrecisionMap (void *map), 333
G3d_tileTypeMap (void *map), 333
G3d_tileUseCacheMap (void *map), 333
G3d_unlockAll (void *map), 328
G3d_unlockTile (void *map, int tileIndex), 328
G3d_useWindowParams (), 341
G3d_windowPtr (), 340
G3d_writeAscii (void *map, char *fname), 345
G3d_writeCats (char *name, struct Categories

*cats), 337

488

Index

G3d_writeColors (char *name, char *mapset, struct
Colors *colors), 337

G3d_writeTile (), 313
G3d_writeTile (void *map, char *tileIndex, int

tile, int type), 323
G3d_writeTileDouble (void *map, char *tileIn-

dex, int tile), 324
G3d_writeTileFloat (void *map, char *tileIndex,

int tile), 324
G3d_writeWindow (G3D_Region *window, char

*windowName), 341
G_ _getenv (char *name), 83
G_ _setenv (char *name, char *value), 83
G_add_c_raster_color_rule (CELL *v1, int r1,

int g1, int b1, CELL *v2, int r2, int
g2, int b2, struct Colors *colors), 138

G_add_color_rule (CELL cat1, int r1, int g1, int
b1, CELL cat2, int r2, int g2, int b2,
struct Colors *colors), 118

G_add_d_raster_color_rule (DCELL *v1, int r1,
int g1, int b1, DCELL *v2, int r2, int
g2, int b2, struct Colors *colors), 138

G_add_f_raster_color_rule (FCELL *v1, int r1,
int g1, int b1, FCELL *v2, int r2, int
g2, int b2, struct Colors *colors), 138

G_add_raster_color_rule (void *v1, int r1, int
g1, int b1, void *v2, int r2, int g2, int
b2, struct Colors *colors, RASTER_MAP_TYPE
map_type), 137

G_adjust_Cell_head (struct Cell_Head *cellhd,
int rflag, int cflag), 113

G_adjust_east_longitude (double east, double west),
103

G_adjust_easting (double east, struct Cell_head
*region), 103

G_align_window (struct Cell_head *region, struct
Cell_head *ref), 95

G_alloc_fmatrix(int rows, int cols), 92
G_alloc_fvector(int n), 91
G_alloc_matrix(int rows, int cols), 91
G_alloc_site_xyz (size_t num), 176
G_alloc_vector(int n), 91
G_allocate_c_raster_buf(), 130
G_allocate_cell_buf (void), 109
G_allocate_d_raster_buf(), 130
G_allocate_f_raster_buf(), 130
G_allocate_null_buf(), 128
G_allocate_raster_buf(RASTER_MAP_TYPEdata_type),

130
G_area_for_zone_on_ellipsoid(double north, dou-

ble south), 100
G_area_for_zone_on_sphere (double north, dou-

ble south), 100
G_area_of_cell_at_row (int row), 99

G_area_of_polygon (double *x, double *y, int
n), 101

G_ask_any (char *prompt, char *name, char *el-
ement, char *label, int warn), 85

G_ask_cell_in_mapset (char *prompt, char *name),
106

G_ask_cell_new (char *prompt, char *name),
106

G_ask_cell_old (char *prompt, char *name), 106
G_ask_datum_name(char *datum), 310
G_ask_in_mapset (char *prompt, char *name,

char *element, char *label), 85
G_ask_new (char *prompt, char *name, char

*element, char *label), 85
G_ask_old (char *prompt, char *name, char *el-

ement, char *label), 85
G_ask_sites_in_mapset (char *prompt, char *name),

172
G_ask_sites_new (char *prompt, char *name),

172
G_ask_sites_old (char *prompt, char *name),

172
G_ask_vector_in_mapset (char *prompt, char *name),

162
G_ask_vector_new (char *prompt, char *name),

162
G_ask_vector_old (char *prompt, char *name),

162
G_begin_cell_area_calculations (void), 99
G_begin_distance_calculations (void), 102
G_begin_ellipsoid_polygon_area (double a, dou-

ble e2), 101
G_begin_geodesic_distance (double a, double

e2), 102
G_begin_polygon_area_calculations (void), 101
G_begin_zone_area_on_ellipsoid (double a, dou-

ble e2, double s), 100
G_begin_zone_area_on_sphere (double r, dou-

ble s), 100
G_bresenham_line (int x1, int y1, int x2, int y2,

int (*point)()), 183
G_calloc (int n, int size), 91
G_chop (char *s), 202
G_close_cell (int fd), 112
G_close_cell(), 134
G_col_to_easting (double col, struct Cell_head

*region), 95
G_construct_default_range (struct Range *r), 146
G_copy_raster_cats (struct Categories *pcats_to,

struct Categories*pcats_from), 155
G_database_datum_name(), 309
G_database_projection_name (int proj), 96
G_database_unit_name (int plural), 96
G_database_units_to_meters_factor (void), 97

489

Index

G_date (), 210
G_define_flag (), 188
G_define_option (), 188
G_disable_interactive (), 189
G_distance (double x1, y1, x2, y2), 102
G_ellipsoid_description(int n), 309
G_ellipsoid_name (int n), 104, 308
G_ellipsoid_name(int n), 309
G_ellipsoid_polygon_area (double *lon, double

*lat, int n), 101
G_fatal_error (char *message, ...), 80
G_find_cell (char *name, char *mapset), 107
G_find_cell_stat (CELL cat, long *count, struct

Cell_stats *s), 124
G_find_cell_stat(), 148
G_find_file (char *element, char *name, char

*mapset), 87
G_find_vector (char *name, char *mapset), 163
G_find_vector2 (char *name, char *mapset), 163
G_fopen_append (char *element, char *name),

89
G_fopen_new (char *element, char *name), 89
G_fopen_old (char *element, char *name, char

*mapset), 88
G_fopen_vector_new (char *name), 164
G_fopen_vector_old (char *name, char *mapset),

164
G_fork (), 205
G_format_easting (double east, char *buf, int

projection), 98
G_format_northing (double north, char *buf, int

projection), 98
G_format_resolution (double resolution, char *buf,

int projection), 98
G_format_timestamp (struct TimeStamp *ts, char

*buf), 170, 216
G_free(void *buf), 90
G_free_cats (struct Categories *cats), 116
G_free_cell_stats (struct Cell_stats *s), 124
G_free_colors (struct Colors *colors), 119
G_free_fmatrix(float **m), 92
G_free_matrix(double **m), 92
G_free_raster_cats (struct Categories *pcats), 160
G_free_site_xyz (SITE_XYZ *xyz), 176
G_free_vector(double *v), 92
G_fully_qualified_name(char *name, char *mapset),

86
G_geodesic_distance (double lon1, double lat1,

double lon2, double lat2), 102
G_geodesic_distance_lon_to_lon (double lon1,

double lon2), 103
G_get_ask_return_msg (void), 86
G_get_c_raster_cat (CELL *val, struct Categories

*pcats), 155

G_get_c_raster_color (CELL *v, int *r, int *g,
int *b, struct Colors *colors), 138

G_get_c_raster_row (int fd, CELL buf, int row),
133

G_get_c_raster_row_nomask(int fd, CELL buf,
int row), 133

G_get_cat (CELL n, struct Categories *cats),
115

G_get_cats_title (Categories *cats), 116
G_get_cell_title (char *name, char *mapset), 115
G_get_cellhd (char *name, char *mapset, struct

Cell_Head *cellhd), 113
G_get_color (CELL cat, int *red, int *green, int

*blue, struct Colors *colors), 118
G_get_color(), 144
G_get_color_range, 119
G_get_colors_min_max(), 144
G_get_d_raster_cat (DCELL *val, struct Cate-

gories *pcats), 155
G_get_d_raster_color (DCELL *v, int *r, int *g,

int *b, struct Colors *colors), 139
G_get_d_raster_row (int fd, DCELL *dcell, int

row), 133
G_get_d_raster_row_nomask(int fd, DECLL *dcell,

int row), 133
G_get_datum_parameters(double*a, double *e2,

double *f, double *dx, double *dy, dou-
ble *dz), 310

G_get_datum_parameters7(double*a, double *e2,
double *f, double *dx, double *dy, dou-
ble *dz, double *rx, double *ry, dou-
ble *rz, double *m), 310

G_get_default_color (int *r, int *g, int *b, struct
Colors *colors), 143

G_get_default_window (struct Cell_head *region),
93

G_get_ellipsoid_by_name (char *name, double
*a, double *e2), 104, 308

G_get_ellipsoid_parameters (double *a, double
*e2), 104, 309

G_get_f_raster_cat (FCELL *val, struct Cate-
gories *pcats), 155

G_get_f_raster_color (FCELL *v, int *r, int *g,
int *b, struct Colors *colors), 138

G_get_f_raster_row (int fd, FCELL fcell, int row),
132

G_get_f_raster_row_nomask(int fd, FCELL *fcell,
int row), 133

G_get_fp_range_min_max(FPRange *r, DCELL
*min, DCELL *max), 147

G_get_ith_c_raster_cat (struct Categories *pcats,
int i, CELL *rast1, CELL *rast2), 156

490

Index

G_get_ith_d_raster_cat (struct Categories *pcats,
int i, DCELL *rast1, DCELL *rast2),
157

G_get_ith_f_raster_cat (struct Categories *pcats,
int i, FCELL *rast1, FCELL *rast2),
157

G_get_ith_raster_cat (struct Categories *pcats,
int i, void *rast1, void *rast2, RASTER_MAP_TYPE
data_type), 156

G_get_map_row (int fd, CELL *cell, int row),
110

G_get_map_row(), 135
G_get_map_row_nomask (int fd, CELL *cell,

int row), 110
G_get_next_marked_c_raster_cat(structCategories

*pcats, CELL *rast1, CELL *rast2,
long *stats), 157

G_get_next_marked_d_raster_cat(structCategories
*pcats, DCELL *rast1, DCELL *rast2,
long *stats), 158

G_get_next_marked_f_raster_cat(structCategories
*pcats, FCELL *rast1, FCELL *rast2,
long *stats), 158

G_get_next_marked_raster_cat(structCategories
*pcats, void *rast1, void *rast2, long
*stats, RASTER_MAP_TYPE data_type),
157

G_get_null_value_color (int *r, int *g, int *b,
struct Colors *colors), 142

G_get_null_value_row (int fd, char *flags, int
row), 128

G_get_range_min_max(struct Range *range, CELL
*min, CELL *max), 123

G_get_range_min_max(), 145
G_get_raster_cat (void *val, struct Categories

*pcats, RASTER_MAP_TYPE data_type),
155

G_get_raster_cats_title (struct Categories *pcats),
157

G_get_raster_color (void *v, int *r, int *g, int
*b, struct Colors *colors, RASTER_MAP_TYPE
data_type), 138

G_get_raster_row (int fd, void *rast, int row,
RASTER_MAP_TYPE data_type), 132

G_get_raster_row_colors(int fd, int row, struct
Colors *colors, unsigned char *red, un-
signed char *grn, unsigned char *blu,
unsigned char *nul), 143

G_get_raster_row_nomask(int fd, FCELL *fcell,
int row, RASTER_MAP_TYPE map_type),
132

G_get_raster_value_c (void *p, RASTER_MAP_TYPE
data_type), 131

G_get_raster_value_d (void *p, RASTER_MAP_TYPE
data_type), 132

G_get_raster_value_f (void *p, RASTER_MAP_TYPE
data_type), 132

G_get_set_window (struct Cell_head *region),
95

G_get_spheroid_by_name(const char *name, dou-
ble *a, double *e2, double *f), 309

G_get_stats_for_null_value(int*count, struct Cell_stats
*s), 148

G_get_timestamps (struct TimeStamp *ts, Date-
Time *dt1, DateTime *dt2, int *count),
169, 215

G_get_window (struct Cell_head *region), 93
G_getenv (char *name), 83
G_gets (char *buf), 210
G_gisbase (void), 82
G_gisdbase (void), 83
G_gisinit (char *program_name), 80
G_home (), 210
G_incr_void_ptr (void *ptr, int size), 130
G_index (str, delim), 203
G_init_cats (CELL n, char *title, struct Cate-

gories *cats), 116
G_init_cell_stats (struct Cell_stats *s), 123
G_init_cell_stats(), 148
G_init_colors (struct Colors *colors), 118
G_init_fp_range (FPRange *r), 147
G_init_range (struct Range *range), 123
G_init_range(), 145
G_init_raster_cats (char *title, struct Categories

*pcats), 159
G_init_raster_range (FPRange *r, RASTER_MAP_TYPE

map_type), 146
G_init_timestamp (struct TimeStamp *ts), 169,

215
G_insert_c_null_values (CELL *cell, char *flags,

int count), 127
G_insert_d_null_values (DCELL *dcell, char *flags,

int count), 127
G_insert_f_null_values (FCELL *fcell, char *flags,

int count), 127
G_insert_null_values (void *rast, char *flags, int

count, RASTER_MAP_TYPE data_type),
126

G_intr_char (), 210
G_is_c_null_value (CELL *cell), 127
G_is_d_null_value (DCELL *dcell), 128
G_is_f_null_value (FCELL *fcell), 128
G_is_little_endian(), 206
G_is_null_value (void *rast, RASTER_MAP_TYPE

data_type), 127
G_is_reclass (char *name, char *mapset, char

r_name, char **r_mapset), 114

491

Index

G_is_reclassed_to (char *name, char *mapset,
int *nrmaps, char ***rmaps), 114

G_legal_filename (char *name), 88
G_location (void), 82
G_location_path (void), 83
G_lookup_c_raster_colors (CELL *cell, char *r,

char *g, char *b, char *set, int n, struct
Colors *colors), 137

G_lookup_colors (CELL *raster, unsigned char
*red, unsigned char *green, unsigned
char *blue, set, int n, struct Colors *col-
ors), 117

G_lookup_colors(), 144
G_lookup_d_raster_colors (DCELL *dcell, char

*r, char *g, char *b, char *set, int n,
struct Colors *colors), 137

G_lookup_f_raster_colors (FCELL *fcell, char
*r, char *g, char *b, char *set, int n,
struct Colors *colors), 137

G_lookup_raster_colors (void *rast, char *r, char
*g, char *b, char *set, int n, struct
Colors *colors, RASTER_MAP_TYPE
cell_type), 137

G_make_aspect_colors (struct Colors *colors,
CELL min, CELL max), 120

G_make_grey_scale_colors (struct Colors *col-
ors, CELL min, CELL max), 120

G_make_gyr_colors (struct Colors *colors, CELL
min, CELL max), 121

G_make_histogram_eq_colors (struct Colors *col-
ors, struct Cell_stats *s), 121

G_make_rainbow_colors (struct Colors *colors,
CELL min, CELL max), 120

G_make_ramp_colors (struct Colors *colors, CELL
min, CELL max), 120

G_make_random_colors (struct Colors *colors,
CELL min, CELL max), 120

G_make_ryg_colors (struct Colors *colors, CELL
min, CELL max), 121

G_make_wave_colors (struct Colors *colors, CELL
min, CELL max), 120

G_malloc (int size), 91
G_mapset (void), 82
G_mark_c_raster_cats (CELL *rast_row, int ncols,

struct Categories *pcats), 158
G_mark_colors_as_fp (struct Colors *colors), 139
G_mark_d_raster_cats (DCELL *rast_row, int

ncols, struct Categories *pcats), 159
G_mark_f_raster_cats (FCELL *rast_row, int ncols,

struct Categories *pcats), 159
G_mark_raster_cats (void *rast_row, int ncols,

struct Categories *pcats, RASTER_MAP_TYPE
data_type), 158

G_maskfd(void), 128

G_matrix_add (mat_struct *mt1, mat_struct *mt2),
382

G_matrix_copy (const mat_struct *A), 383
G_matrix_free (mat_struct *mt), 384
G_matrix_get_element (mat_struct *mt, int row-

val, int colval), 384
G_matrix_init (int rows, int cols, int ldim), 381
G_matrix_inverse (mat_struct *mt), 384
G_matrix_LU_solve (const mat_struct *mt1, mat_struct

**xmat0, const mat_struct *bmat, mat_type
mtype), 383

G_matrix_print (mat_struct *mt), 383
G_matrix_product (mat_struct *mt1, mat_struct

*mt2), 383
G_matrix_scale (mat_struct *mt1, const double

c), 383
G_matrix_set(mat_struct *A, int rows, int cols,

int ldim), 382
G_matrix_set_element (mat_struct *mt, int row-

val, int colval, double val), 384
G_matrix_subtract (mat_struct *mt1, mat_struct

*mt2), 383
G_matrix_transpose (mat_struct *mt), 383
G_matvect_extract_vector (mat_struct *mt, vtype

vt, int indx), 385
G_matvect_get_column (mat_struct *mt, int col),

384
G_matvect_get_row (mat_struct *mt, int row),

385
G_matvect_retrieve_matrix (vec_struct *vc), 385
G_meridional_radius_of_curvature(double lon,

double a, double e2), 104
G_myname (void), 82
G_next_cell_stat (CELL *cat, long *count, struct

Cell_stats *s), 124
G_next_cell_stat(), 148
G_northing_to_row (double north, struct Cell_head

*region), 96
G_number_of_raster_cats (pcats), 156
G_open_cell_new (char *name), 108
G_open_cell_new_random (char *name), 108
G_open_cell_new_uncompressed (char *name,

109
G_open_cell_old (char *name, char *mapset),

107
G_open_cell_old(), 135
G_open_fp_map_new (char *name), 129
G_open_new (char *element, char *name), 89
G_open_old (char *element, char *name, char

*mapset), 88
G_open_raster_new[_uncompressed](char*name,

RASTER_MAP_TYPE map_type), 129
G_open_update (char *element, char *name),

88

492

Index

G_parser (int argc, char *argv[]), 188
G_percent (int n, int total, int incr), 211
G_plot_area (double **xs, double **ys, int *npts,

int rings), 184
G_plot_fx (double (*f)(), double east1, double

east2), 185
G_plot_line (double east1, double north1, dou-

ble east2, double north2), 184
G_plot_polygon (double *east, double *north,

int n), 184
G_plot_where_en (int x, int y, double *east, dou-

ble *north), 184
G_plot_where_xy (double *east, double *north,

int *x, int *y), 185
G_pole_in_polygon (double *x, double *y, int

n), 105
G_program_name (), 211
G_projection (void), 96
G_put_c_raster_row (int fd, CELL buf), 134
G_put_cell_title (char *name, char *title), 115
G_put_cellhd (char *name, struct Cell_Head *cellhd),

113
G_put_d_raster_row (int fd, DCELL *dcell), 134
G_put_f_raster_row (int fd, FCELL *fcell), 134
G_put_map_row (int fd, CELL *buf), 111
G_put_map_row(), 135
G_put_map_row_random (int fd, CELL *buf,

int row, int col, int ncells), 111
G_put_raster_row (int fd, void *rast, RASTER_MAP_TYPE

data_type), 133
G_put_window (struct Cell_head *region), 93
G_quant_add_rule (struct Quant *q, DCELL dmin,

DCELL dmax, CELL cmin, CELL cmax),
150

G_quant_free (struct Quant *q), 149
G_quant_get_cell_value (struct Quant *q, DCELL

value), 152
G_quant_get_limits (struct Quant *q, DCELL

*dmin, DCELL *dmax, CELL *cmin,
CELL *cmax), 151

G_quant_get_negative_infinite_rule (struct Quant
*q, DCELL *dmin, CELL *c), 151

G_quant_get_positive_infinite_rule (struct Quant
*q, DCELL *dmax, CELL *c), 150

G_quant_get_rule (struct Quant *q, int n, DCELL
*dmin, DCELL *dmax, CELL *cmin,
CELL *cmax), 151

G_quant_init (struct Quant *q), 149
G_quant_nrules (struct Quant *q), 151
G_quant_organize_fp_lookup(struct Quant *quant),

150
G_quant_perform_d (struct Quant *q, DCELL

*dcell, CELL *cell, int n), 152

G_quant_perform_f (struct Quant *q, FCELL
*fcell, CELL *cell, int n), 152

G_quant_set_negative_infinite_rule (struct Quant
*q, DCELL dmin, CELL c), 151

G_quant_set_positive_infinite_rule (struct Quant
*q, DCELL dmax, CELL c), 150

G_quant_truncate (struct Quant *q), 149, 150
G_quantize_fp_map (char *name, CELL cmin,

CELL cmax), 152
G_quantize_fp_map_range(char *name, DCELL

dmin, DCELL dmax, CELL cmin, CELL
cmax), 153

G_radius_of_conformal_tangent_sphere (double
lon, double a, double e2), 105

G_raster_cmp (void *p, *q, RASTER_MAP_TYPE
data_type), 131

G_raster_cpy (void *p, void *q, int n, RASTER_MAP_TYPE
data_type), 131

G_raster_map_is_fp(char*name, char *mapset),
129

G_raster_map_type(char*name, char *mapset),
129

G_raster_size (RASTER_MAP_TYPE data_type),
130

G_read_cats (char *name, char *mapset, struct
Categories *cats), 114

G_read_colors (char *name, char *mapset, struct
Colors *colors), 117

G_read_colors(), 143
G_read_fp_range (struct FPRange *r, char *name,

char *mapset), 146
G_read_grid3_timestamp(char *name,char *mapset,

struct TimeStamp *ts), 217
G_read_history (char *name, char *mapset, struct

History *history), 121
G_read_quant (char *name, char *mapset, struct

Quant *q), 149
G_read_range (char *name, char *mapset, struct

Range *range), 122
G_read_range(), 145
G_read_raster_cats (char *name, *mapset, struct

Categories *pcats), 154
G_read_raster_range (void *r, char *name, char

*mapset, RASTER_MAP_TYPEmap_type),
146

G_read_raster_timestamp (char *name, char *mapset,
struct TimeStamp *ts), 169, 215

G_read_vector_cats (char *name, name *mapset,
struct Categories *cats), 165

G_read_vector_timestamp(char *name, char *mapset,
struct TimeStamp *ts), 169, 215

G_readsites_xyz (FILE *fdsite, int type, int in-
dex, int size, struct Cell_head *region,
SITE_XYZ *xyz), 176

493

Index

G_realloc (void *ptr, int size), 91
G_remove (char *element, char *name), 90
G_remove_grid3_timestamp (char *name), 217
G_remove_raster_timestamp(char *name), 170,

216
G_remove_vector_timestamp(char *name), 170,

217
G_rename (char *element, char *old, char *new),

90
G_rewind_cell_stats (struct Cell_stats *s), 124
G_rewind_raster_cats (struct Categories *pcats),

159
G_rindex (str, delim), 204
G_row_to_northing(double row, struct Cell_head

*region), 95
G_row_update_range (CELL *cell, int n, struct

Range *range), 123
G_scan_easting (char *buf, double *easting, int

projection), 98
G_scan_northing (char *buf, double *northing,

int projection), 99
G_scan_resolution (char *buf, double *resolu-

tion, int projection), 99
G_scan_timestamp (struct TimeStamp *ts, char

*buf), 170, 216
G_set_ask_return_msg (char *msg), 86
G_set_c_null_value (CELL *cell, int count), 126
G_set_c_raster_cat (CELL *rast1, CELL *rast2,

struct Categories *pcats), 156
G_set_c_raster_color (CELL *v, int r, int g, int

b, struct Colors *colors), 139
G_set_cat (CELL n, char *label, struct Cate-

gories *cats), 116
G_set_cats_title (char *title, struct Categories

*cats), 116
G_set_color (CELL cat, int red, int green, int

blue, struct Colors *colors), 119
G_set_d_null_value (DCELL *dcell, int count),

126
G_set_d_raster_cat (DCELL *rast1, DCELL *rast2,

struct Categories *pcats), 156
G_set_d_raster_color (DCELL *v, int r, int g,

int b, struct Colors *colors), 139
G_set_default_color (int r, int g, int b, struct

Colors *colors), 143
G_set_error_routine (int (*handler)()), 81
G_set_f_null_value (FCELL *fcell, int count),

126
G_set_f_raster_cat (FCELL *rast1, FCELL *rast2,

struct Categories *pcats), 156
G_set_f_raster_color (FCELL *v, int r, int g, int

b, struct Colors *colors), 139
G_set_fp_type (RASTER_MAP_TYPE type), 129
G_set_geodesic_distance_lat1 (double lat1), 103

G_set_geodesic_distance_lat2 (double lat2), 103
G_set_null_value (void *rast, int count, RASTER_MAP_TYPE

data_type), 126
G_set_null_value_color (int r, int g, int b, struct

Colors *colors), 142
G_set_quant_rules (int fd, struct Quant *q), 149
G_set_raster_cat (void *rast1, void *rast2, struct

Categories *pcats, RASTER_MAP_TYPE
data_type), 155

G_set_raster_cats_fmt (char *fmt, float m1, a1,
m2, a2, struct Categories*pcats), 159

G_set_raster_cats_title (char *title, struct Cate-
gories *pcats), 159

G_set_raster_color (void *v, int r, int g, int b,
struct Colors *colors, RASTER_MAP_TYPE
data_type), 139

G_set_raster_value_c (void *p, CELL val, RASTER_MAP_TYPE
data_type), 131

G_set_raster_value_d (void *p, DCELL val, RASTER_MAP_TYPE
data_type), 131

G_set_raster_value_f (void *p, FCELL val, RASTER_MAP_TYPE
data_type), 131

G_set_timestamp, 168
G_set_timestamp (struct TimeStamp *ts, Date-

Time *dt), 169
G_set_timestamp (struct TimeStamp *ts, Date-

Time *dt) , 215
G_set_timestamp_range, 169
G_set_timestamp_range (struct TimeStamp *ts,

DateTime *dt1, DateTime *dt2), 169
G_set_timestamp_range (struct TimeStamp *ts,

DateTime *dt1, DateTime *dt2) , 215
G_set_window (struct Cell_head *region), 94
G_setenv (char *name, char *value), 83
G_setup_plot (double t, double b, double l, dou-

ble r, nt (*Move)(), int (*Cont)()),
183

G_short_history (char *name, char *type, struct
History *history), 122

G_shortest_way (double *east1, double *east2),
104

G_site_c_cmp (void *a, void *b), 175
G_site_d_cmp (void *a, void *b), 175
G_site_describe (FILE *fd, RASTER_MAP_TYPE

n, int *c, int *s, int *d), 173
G_site_format (Site *s, char *fs, int id), 174
G_site_free_struct (Site *site), 173
G_site_get (FILE *fd, Site *s), 174
G_site_get_head (FILE *fd, Site_head *head),

175
G_site_in_region (Site *site, struct Cell_head

*region), 175
G_site_new_struct (RASTER_MAP_TYPE c, int

n, int s, int d), 173

494

Index

G_site_put (FILE *fd, Site *s), 174
G_site_put_head (FILE *fd, Site_head *head),

175
G_site_s_cmp (void *a, void *b), 175
G_sites_open_new (char *name), 172
G_sites_open_old (char *name, char *mapset),

173
G_sleep_on_error (int flag), 81
G_sock_accept (int fd), 207
G_sock_bind (char *name), 207
G_sock_connect (char *name), 208
G_sock_exists (char *name), 207
G_sock_get_fname (char *name), 206
G_sock_listen (int fd, unsigned int queue), 207
G_squeeze (char *s), 202
G_store (char *s), 202
G_strcasecmp(char *a, char *b, 204
G_strcat (char *dst, char *src), 201
G_strchg (char *bug, char character, char new),

202
G_strcpy (char *dst, char *src), 201
G_strdup(char *string), 204
G_strip (char *s), 202
G_strncpy (char *dst, char *src, int n), 201
G_strstr(char *mainString, char *subString), 204
G_suppress_warnings (int flag), 81
G_system (command), 206
G_tempfile (), 185
G_tolcase (char *s), 202
G_toucase (char *s), 203
G_transverse_radius_of_curvature (double lon,

double a, double e2), 105
G_trim_decimal (char *buf), 203
G_unctrl (unsigned char c), 203
G_unmark_raster_cats (struct Categories *pcats),

157
G_unopen_cell (int fd), 112
G_unset_error_routine (void), 81
G_update_cell_stats (CELL *data, int n, struct

Cell_stats *s), 124
G_update_cell_stats(), 148
G_update_d_range (FPRange *r, DCELL *dcell,

int n), 147
G_update_f_range (FPRange *r, FCELL *fcell,

int n), 147
G_update_range (CELL cat, struct Range *range),

123
G_update_range(), 145
G_usage (), 188
G_vector_copy (const vec_struct *vc1, int comp_flag),

386
G_vector_init (int cells, int ldim, vtype vt), 385
G_vector_norm_euclid (vec_struct *vc), 386

G_vector_norm_maxval (vec_struct *vc, int vflag),
386

G_vector_set (vec_struct *A, int cells, int ldim,
vtype vt, int vindx), 385

G_warning (char *message, ...), 80
G_whoami (), 211
G_window_cols (void), 94
G_window_rows (void), 94
G_write_cats (char *name, struct Categories *cats),

115
G_write_colors (char *name, char *mapset, struct

Colors *colors), 117
G_write_colors(), 143
G_write_fp_range (FPRange *r), 147
G_write_grid3_timestamp (char *name, struct

TimeStamp *ts), 217
G_write_history (char *name, struct History *his-

tory), 121
G_write_quant (char *name, char *mapset, struct

Quant *q), 148
G_write_range (char *name, struct Range *range),

122
G_write_range(), 146
G_write_raster_cats (char *name, struct Cate-

gories *pcats), 160
G_write_raster_timestamp (char *name, struct

TimeStamp *ts), 170, 216
G_write_vector_cats (char *name, struct Cate-

gories *cats), 165
G_write_vector_timestamp (char *name, struct

TimeStamp *ts), 170, 216
G_yes (char *question, int default), 211
G_zero_cell_buf (CELL *buf), 109
G_zero_raster_row (void *rast, RASTER_MAP_TYPE

data_type), 134
G_zone (void), 97
GIS_ERROR_LOG, 80
GK_add_key (float pos, unsigned long fmask,

int force_replace, float precis), 375
GK_clear_keys(), 376
GK_delete_key (float pos, float precis, int jus-

tone), 376
GK_do_framestep (int step, int render), 376
GK_move_key (float oldpos, float precis, float

newpos), 376
GK_set_interpmode (int mode), 377
GK_set_numsteps (int newsteps), 377
GK_set_tension (float tens), 377
GK_show_path (int flag), 377
GK_showtension_stop(), 377
GK_update_frames(), 378
GP_get_site_list (int *numsites), 375
GS_draw_X (int id, float *pt), 367
GS_dv3norm(double dv1[3]), 367

495

Index

GS_geodistance (double *from, double *to, char
*units), 368

GS_get_distance_alongsurf (int hs, int use_exag,
float x1, float y1, float x2, float y2,
float *dist), 368

GS_get_fov(), 368
GS_get_modelposition (float *siz, float pos[3]),

369
GS_get_selected_point_on_surface (int sx, int

sy, int *id, float *x, float *y, float *z),
369

GS_get_val_at_xy (int id, char *att, char *val-
str, float x, float y), 369

GS_get_zextents (int id, float *min, float *max,
float *mid), 370

GS_get_zrange (float *min, float *max, int doexag),
370

GS_get_zrange_nz (float *min, float *max), 370
GS_look_here (int sx, int sy), 370
GS_set_draw (int where), 371
GS_set_twist (int t), 372
GS_setlight_ambient (int num, float red, float

green, float blue), 372
GS_setlight_color (int num, float red, float green,

float blue), 372
GS_v3cross (float v1[3], float v2[3], float v3[3]),

373
GS_v3mult (float v1[3], float k), 373
GS_v3norm (float v1[3]), 373
GS_v3normalize (float v1[3], float v2[3]), 373
GS_v3sub (float v1[3], float v2[3]), 373
GV_get_vect_list (int *numvects), 374
GV_select_surf (int hv, int hs), 374

I_add_file_to_group_ref (char *name, char *mapset,
struct Ref *ref), 236

I_ask_group_any (char *prompt, char *group),
234

I_ask_group_new (char *prompt, char *group),
234

I_ask_group_old (char *prompt, char *group),
234

I_find_group (char *group), 235
I_free_group_ref (struct Ref *ref), 237
I_get_control_points (char *group, struct Con-

trol_Points *cp), 237
I_get_group_ref (char *group, struct Ref *ref),

235
I_get_subgroup_ref (char *group, char *subgroup,

struct Ref *ref), 235
I_get_target (char *group, char *location, char

*mapset), 237
I_init_group_ref (struct Ref *ref), 236

I_new_control_point (struct Control_Points *cp,
double e1, double n1, double e2, dou-
ble n2, int status), 238

I_put_control_points (char *group, struct Con-
trol_Points *cp), 238

I_put_group_ref (char *group, struct Ref *ref),
235

I_put_subgroup_ref (char *group, char *subgroup,
struct Ref *ref), 236

I_put_target (char *group, char *location, char
*mapset), 237

I_transfer_group_ref_file (struct Ref *src, int n,
struct Ref *dst), 236

lock_file (char *file, int pid), 269

pj_do_proj(double *x, double *y, struct pj_info
*info_in, struct pj_info *info_out), 292

pj_do_transform(int count, double *x, double
*y, double *h, struct pj_info *info_in,
struct pj_info *info_out), 292

pj_get_kv(struct pj_info *info, struct Key_Value
*in_proj_keys, struct Key_Value *in_units_keys),
292

pj_get_string(struct pj_info *info, char *str), 292
pj_zero_proj (struct pj_info *info), 292

R_box_abs (int x1, int y1, int x2, int y2), 247
R_box_rel (int dx, int dy), 247
R_close_driver (), 244
R_color (int color), 245
R_color_table_fixed (), 244
R_color_table_float (), 245
R_cont_abs (int x, int y), 247
R_cont_rel (int dx, int dy), 247
R_erase (), 248
R_flush (), 248
R_font (char *font), 251
R_get_location_with_box (int x, int y, int *nx,

int *ny, int *button), 253
R_get_location_with_line (int x, int y, int *nx,

int *ny, int *button), 253
R_get_location_with_pointer (int *nx, int *ny,

int *button), 252
R_get_text_box (char *text, int *top, int *bot-

tom, int *left, int *right), 251
R_move_abs (int x, int y), 246
R_move_rel (int dx, int dy), 247
R_open_driver (), 244
R_polydots_abs (int *x, int *y, int num), 248
R_polydots_rel (int *x, int *y, int num), 248
R_polygon_abs (int *x, int *y,int num), 249
R_polygon_rel (int *x, int *y, int num), 249
R_polyline_abs (int *x, int *y, int num), 249
R_polyline_rel (int *x, int *y, int num), 249

496

Index

R_raster (int num, int nrows, int withzero, int
*raster), 249

R_reset_color (unsigned char red, unsigned char
green, unsigned char blu, int num),
245

R_reset_colors (int min, int max, unsigned char
*red, unsigned char *green, unsigned
char *blue), 245

R_RGB_color (int red, int green, int blue), 245
R_RGB_raster (int num, int nrows, unsigned char

*red, unsigned char *green, unsigned
char *blue, int withzero), 250

R_screen_bot (), 246
R_screen_left (), 246
R_screen_rite (), 246
R_screen_top (), 246
R_set_RGB_color (unsigned char red[256], un-

signed char green[256], unsigned char
blue[256]), 250

R_set_window (int top, int bottom, int left, int
right), 250

R_stabilize (), 248
R_standard_color (int color), 245
R_text (char *text), 251
R_text_size (int width, int height), 251
rowio_fileno (ROWIO *r), 273
rowio_forget (ROWIO *r, int n), 273
rowio_get (ROWIO *r, int n), 272
rowio_put (ROWIO *r, char *buf, int n), 273
rowio_release (ROWIO *r), 273
rowio_setup (ROWIO *r, int fd, int nrows, int

len, int (*getrow)(), int (*putrow)()),
272

segment_flush (SEGMENT *seg), 278
segment_format (int fd, int nrows, int ncols, int

srows, int scols, int len), 276
segment_get (SEGMENT *seg, char *value, int

row, int col), 277
segment_get_row (SEGMENT *seg, char *buf,

int row), 278
segment_init (SEGMENT *seg, int fd, int nsegs),

276
segment_put (SEGMENT *seg, char *value, int

row, int col), 277
segment_put_row (SEGMENT *seg, char *buf,

int row), 277
segment_release (SEGMENT *seg), 278

unlock_file (char *file), 269

V1_read_line (struct Map_info *Map, struct line_pnts
*Points, long offset), 225

V2_area_att (struct Map_info *Map, int area),
228

V2_get_area (struct Map_info *Map, int n, P_AREA
**pa), 229

V2_get_area_bbox (struct Map_info *Map, int
area, double *n, double *s, double *e,
double *w), 229

V2_get_line_bbox (struct Map_info *Map, int
line, double *n, double *s, double *e,
double *w), 229

V2_line_att (struct Map_info *Map, int line),
228

V2_num_areas (struct Map_info *Map), 228
V2_num_islands (struct Map_info *Map), 228
V2_num_lines (struct Map_info *Map), 228
V2_read_line (struct Map_info *Map, struct line_pnts

*Points, int line), 225
V_call (), 283
V_clear (), 281
V_const (Ctype *value, char type, int row, int

col, int len), 282
V_float_accuracy (int num), 283
V_intrpt_msg (char *text), 283
V_intrpt_ok (), 283
V_line (int num, char *text), 282
V_ques (Ctype *value, char type, int row, int

col, int len) , 282
Vect_close (struct Map_info *Map), 223
Vect_copy_head_data (struct dig_head *from, struct

dig_head *to), 226
Vect_copy_pnts_to_xy(struct line_pnts *Points,

double *x, double *y, int *n), 226
Vect_copy_xy_to_pnts (struct line_pnts *Points,

double *x, double *y, int n), 225
Vect_destroy_line_struct (struct line_pnts *Points),

225
Vect_get_area_points (struct Map_info *Map, int

area, struct line_pnts *Points), 227
Vect_get_isle_points (struct Map_info *Map, int

isle, struct line_pnts *Points), 227
Vect_get_point_in_area (struct Map_info *Map,

int area, double *X, double *Y), 226
Vect_get_point_in_poly (struct line_pnts *Points,

double *X, double *Y), 227
Vect_get_point_in_poly_isl (struct line_pnts *APoints,

struct line_pnts **IPoints, int n_isles,
double *X, double *Y), 227

Vect_level (struct Map_info *Map), 229
Vect_new_line_struct (void), 225
Vect_open_new (struct Map_info *Map, char *name),

223
Vect_open_old (struct Map_info *Map, char *name,

char *mapset), 222
Vect_point_in_islands (struct Map_info *Map,

int area, double x, double y), 227
Vect_print_header (struct Map_info *Map), 229

497

Index

Vect_read_next_line (struct Map_info *Map, struct
line_pnts *Points), 223

Vect_remove_constraints (struct Map_info *Map),
224

Vect_rewind (struct Map_info *Map), 224
Vect_set_constraint_region(struct Map_info *Map,

double n, double s, double e, double
w), 224

Vect_set_constraint_type (struct Map_info *Map,
int type), 224

Vect_set_open_level (int level), 223
Vect_write_line (struct Map_info *Map, int type,

struct line_pnts *Points), 224

498

C GNU Free Documentation License

Version 1.1, March 2000

http://www.gnu.org/copyleft/fdl.html

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute Verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The "Document", below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed as
"you".

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied Verbatim, or with modifications and/or translated into another language.

499

http://www.gnu.org/copyleft/fdl.html

C GNU Free Documentation License

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, whose contents can be viewed and
edited directly and straightforwardly with generic text editors or (for images composed of pix-
els) generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by readers is not
Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only by proprietary word pro-
cessors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

500

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as Verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible computer-network location containing a
complete Transparent copy of the Document, free of added material, which the general network-
using public has access to download anonymously at no charge using public-standard network
protocols. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS You may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

� A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Docu-
ment, and from those of previous versions (which should, if there were any, be listed in
the History section of the Document). You may use the same title as a previous version if
the original publisher of that version gives permission.

� B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has less than five).

� C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

� D. Preserve all the copyright notices of the Document.

501

C GNU Free Documentation License

� E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

� F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

� G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

� H. Include an unaltered copy of this License.

� I. Preserve the section entitled "History", and its title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section entitled "History" in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

� J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Doc-
ument for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

� K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

� L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

� M. Delete any section entitled "Endorsements". Such a section may not be included in
the Modified Version.

� N. Do not retitle any existing section as "Endorsements" or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through

502

arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original
documents, forming one section entitled "History"; likewise combine any sections entitled "Ac-
knowledgements", and any sections entitled "Dedications". You must delete all sections entitled
"Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for Verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding Verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, does not as a whole
count as a Modified Version of the Document, provided no compilation copyright is claimed for
the compilation. Such a compilation is called an "aggregate", and this License does not apply
to the other self-contained works thus compiled with the Document, on account of their being
thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts

503

C GNU Free Documentation License

may be placed on covers that surround only the Document within the aggregate. Otherwise they
must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original English version
of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Docu-
ment is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document speci-
fies that a particular numbered version of this License "or any later version" applies to it, you
have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

FSF & GNU inquiries & questions to gnu@gnu.org.

504

	Introduction
	Background
	Objective
	Approach
	Scope
	Mode of Technology Transfer
	GRASS Information Center

	Development Guidelines
	Intended GRASS Audience
	Programming Standards
	Documentation Standards

	Multilevel
	General User
	GRASS Programmer
	Driver Programmer
	GRASS System Designer

	Database Structure
	Programming Interface
	GISDBASE
	Locations
	Mapsets
	Mapset Structure
	Mapset Files
	Elements

	Permanent Mapset
	Database Access Rules
	Mapset Search Path
	UNIX File Permissions

	Supported Projections

	Raster Maps
	What is a Raster Map Layer?
	Raster File Format
	Raster Header Format
	Regular Format
	Reclass Format

	Raster Category File Format
	Raster Color Table Format
	Raster History File Format
	Raster Range File Format
	Raster Maps: Floating-Point / NULL support (draft, needs to be merged into tutorial!)
	Objectives
	Design decisions

	Vector Maps
	What is a Vector Map Layer?
	Ascii Arc File Format
	Header Section
	Arc Section

	Vector Category Attribute File
	Vector Category Label File
	Vector Index and Pointer File
	Digitizer Registration Points File
	Vector Topology Rules
	Importing Vector Files Into GRASS

	Point Data: Site List Files
	What is a Site List?
	GRASS 5 Site File Format
	Programming Interface to Site Files

	Image Data: Groups
	Introduction
	What is a Group?
	A List of Cell Files
	Image Registration and Rectification
	Image Classification

	The Group Structure
	The REF File
	The POINTS File
	The TARGET File
	Subgroups

	Imagery Modules
	Programming Interface for Groups

	Region and Mask
	Region
	Mask
	Variations

	Environment Variables
	UNIX Environment
	GRASS Environment
	Difference Between GRASS and UNIX Environments

	Compiling and Installing GRASS Modules
	gmake5
	Gmakefile Variables
	Constructing a Gmakefile
	Building modules from source (.c) files
	Include files
	Building object libraries
	Building more than one target

	Compilation Results
	Multiple-Architecture Conventions
	Compiled Command Destinations

	Notes
	Bypassing the creation of .o files
	Simultaneous compilation

	GIS Library
	Introduction to GIS Library
	Library Initialization
	Diagnostic Messages
	Environment and Database Information
	Fundamental Database Access Routines
	Prompting for Database Files
	Fully Qualified File Names
	Finding Files in the Database
	Legal File Names
	Opening an Existing Database File for Reading
	Opening an Existing Database File for Update
	Creating and Opening a New Database File
	Database File Management

	Memory Allocation
	The Region
	The Database Region
	The Active Module Region
	Projection Information

	Latitude-Longitude Databases
	Coordinates
	Raster Area Calculations
	Polygonal Area Calculations
	Distance Calculations
	Global Wraparound
	Miscellaneous

	Raster File Processing
	Prompting for Raster Files
	Finding Raster Files in the Database
	Opening an Existing Raster File
	Creating and Opening New Raster Files
	Allocating Raster I/O Buffers
	Reading Raster Files
	Writing Raster Files
	Closing Raster Files

	Raster Map Layer Support Routines
	Raster Header File
	Raster Category File
	Raster Color Table
	Raster Range File
	Raster Histograms

	GRASS 5 raster API [needs to be merged into above sections]
	Changes to "gis.h"
	New NULL-value functions
	New Floating-point and type-independent functions
	Upgrades to Raster Functions (comparing to GRASS 4.x)
	Color Functions (new and upgraded)
	Range functions (new and upgraded)
	New and Upgraded Cell_stats functions
	New Quantization Functions
	Categories Labeling Functions (new and upgraded)
	Range functions (new and upgraded)
	Library Functions that are Deprecated
	Guidelines for upgrading GRASS 4.x Modules
	Important hints for upgrades to raster modules

	Vector File Processing
	Prompting for Vector Files
	Finding Vector Files in the Database
	Opening an Existing Vector File
	Creating and Opening New Vector Files
	Reading and Writing Vector Files
	Vector Category File

	Site List Processing (GRASS 5 Sites API)
	Part 2 of a Site Record: Attributes
	Header and Comment Record Format
	TimeStamp GISlib functions for sites
	Record Structure and Definitions
	Function Prototypes
	Sites Programming Examples

	General Plotting Routines
	Temporary Files
	Command Line Parsing
	Description
	Structures
	Parser Routines
	Parser Programming Examples
	Full Structure Members Description
	Common Questions

	String Manipulation Functions
	Enhanced UNIX Routines
	Running in the Background
	Partially Interruptible System Call
	ENDIAN test

	Unix Socket Functions
	Trivial Socket Server Example

	Miscellaneous
	GIS Library Data Structures
	struct Cell_head
	struct Categories
	struct Colors
	struct History
	struct Range

	Loading the GIS Library
	Timestamp functions
	GRASS GIS Library Overview

	Vector Library
	Introduction to Vector Library
	Include Files
	Vector Arc Types
	Levels of Access

	Changes in 4.0 from 3.0
	Problem
	Solution
	Approach
	Implementation

	Opening and closing vector maps
	Reading and writing vector maps
	Data Structures
	Data Conversion
	Miscellaneous
	Routines that remain from GRASS 3.1
	Loading the Vector Library

	Imagery Library
	Introduction to Imagery Library
	Group Processing
	Prompting for a Group
	Finding Groups in the Database
	REF File
	TARGET File
	POINTS File

	Loading the Imagery Library
	Imagery Library Data Structures
	struct Ref
	struct Control_Points

	Raster Graphics Library
	Introduction
	Connecting to the Driver
	Colors
	Basic Graphics
	Poly Calls
	Raster Calls
	Text
	GRASS font support
	User Input
	Loading the Raster Graphics Library

	Display Graphics Library
	Introduction
	Library Initialization
	Frame Management
	Frame Contents Management
	Coordinate Transformation Routines
	Raster Graphics
	Window Clipping
	Pop-up Menus
	Colors
	Loading the Display Graphics Library
	Vector Graphics / Plotting Routines
	DISPLAYLIB routines

	Lock Library
	Introduction
	Lock Routine Synopes
	Loading the Lock Library

	Rowio Library
	Introduction
	Rowio Routine Synopses
	Rowio Programming Considerations
	Loading the Rowio Library

	Segment Library
	Introduction
	Segment Routines
	How to Use the Library Routines
	Loading the Segment Library

	Vask Library
	Introduction
	Vask Routine Synopses
	An Example Program
	Loading the Vask Library
	Programming Considerations

	Projection and Datum support
	Supported projections
	GRASS and the PROJ4 projection library
	Include Files
	Initialization
	Projection of coordinate pairs
	Programming Example

	Coordinate Conversion Library (coorcnv)
	Introduction to the Coordinate Conversion Library
	Future plans for enhanced map datum support
	Datum-shift related functions
	Latitude-Longitude related functions
	Projection and inverse projection, UTM, Transverse Mercator
	changes to gislib

	Grid3D raster volume library
	Directory Structure
	Data File Format
	Transportability of data file
	Tile Data NULL-values
	Tile Data Compression
	Tile Cache
	Header File
	Region Structure
	Windows
	Masks
	Include File

	G3D Defaults
	Cache Mode
	Compression
	Tiles
	Setting the window
	Setting the Units
	Error Handling: Setting the error function

	G3D Function Index
	Opening and Closing G3D Files
	Reading and Writing Tiles
	Reading and Writing Cells
	Loading and Removing Tiles
	Write Functions used in Cache Mode
	Locking and Unlocking Tiles, and Cycles
	Reading Volumes
	Allocating and Freeing Memory
	G3D Null Value Support
	G3D Map Header Information
	G3D Tile Math
	G3D Range Support
	G3D Color Support
	G3D Categories Support
	G3D Mask Support
	G3D Window Support
	G3D Region
	Miscellaneous Functions

	Sample G3D Applications

	DateTime Library
	Introduction
	Relative vs. Absolute
	Calendar Assumptions

	DateTime library functions
	ASCII Representation
	Initializing, Creating and Checking DateTime Structures
	Getting & Setting Values from DateTime Structure
	DateTime Arithmetic
	Utilities
	Error Handling
	Example Application

	gsurf Library for OpenGL programming (ogsf)
	Overview
	Naming Conventions
	Public function prototypes
	Function Prototypes for gsurf Library
	Public include file gsurf.h
	Public include file keyframe.h
	Public color packing utility macros rgbpack.h
	Private types and defines gstypes.h
	Private utilities gsget.h

	Numerical math interface to LAPACK/BLAS
	Implementation
	Matrix-Matrix functions
	Matrix-Vector functions
	Vector-Vector functions
	Notes
	Example

	GUI programming: Graphical user interfaces
	TclTkGRASS
	TclTkGRASS Programming

	XML/Python

	Digitizer/Mouse/Trackball Files (.dgt)
	Rules for Digitizer Configuration Files
	Digitizer Configuration File Commands
	Setup
	Startrun, Startpoint, Startquery, Stop, Query
	Format

	Examples of Complete Files
	Example 1
	Example 2

	Digitizer File Naming Conventions

	Writing a Graphics Driver
	Introduction
	Basics
	Basic Routines
	Open/Close Device
	Return Edge and Color Values
	Drawing Routines
	Colors
	Mouse Input
	Panels

	Optional Routines

	Writing a Paint Driver
	Introduction
	Creating a Source Directory for the Driver Code
	The Paint Driver Executable Program
	Printer I/O Routines
	Initialization
	Alpha-Numeric Mode
	Graphics Mode
	Color Information

	The Device Driver Shell Script
	Programming Considerations
	Paint Driver Library
	Compiling the Driver
	Creating 125 Colors From 3 Colors

	Writing GRASS Shell Scripts
	Use the Bourne Shell
	How a Script Should Start
	g.ask
	g.findfile

	GRASS CVS repository
	Appendix
	Appendix A: Annotated Gmakefile Predefined Variables
	Appendix B: The CELL Data Type
	Appendix C: Index to GIS Library
	Appendix D: Index to Vector Library
	Appendix E: Index to Imagery Library
	Appendix F: Index to Display Graphics Library
	Appendix G: Index to Raster Graphics Library
	Appendix H: Index to Rowio Library
	Appendix I: Index to Segment Library
	Appendix J: Index to Vask Library
	Appendix K: Index to Grid3D Library Subroutines
	Appendix L: Index to DateTime Library Subroutines
	Appendix M: Permuted Index for Library Subroutines

	Newindex
	GNU Free Documentation License

