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Abstract

The following is a tutorial for s.sv and m.svfit, GRASS sites pro-
grams for semivariogram calculation and modeling of one variable (scat-
tered data) in IR2. The �rst few sections (x1{5) of this tutorial de�nes the
methods used by these programs and last section (x6) shows how they are
used with a data set from Cressie [2].

1 Introduction

This tutorial assumes that the reader has taken at least an introductory course
in statistics and has some background in semivariogram modeling. It also as-
sumes that the reader has reviewed the manual pages for s.sv and m.svfit.
An excellent practical introduction to geostatistics has been written by Isaaks
and Srivastava [4]. Cressie [2] provides a larger, more complete, and more math-
ematically based reference book. Sample data sets from each of these works are
available from the author so that a user may learn from both the references and
this software simultaneously.

2 De�nition of Semivariance

If we consider a stochastic process Z; as a function of spatial coordinate s, then
the variogram 2
(�) is de�ned as

2
 (s1 � s2) � var [Z(s1) � Z(s2)] : (1)

When the process Z(�) is instrinsically stationary, the variogrammay be de�ned
as [2]:

2
 (s1 � s2) � E [Z(s1)� Z(s2)] : (2)
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If we de�ne the lag h as the distance and angle between s1 and s2; then the
semivariogram is a plot of 
 as a function of h.

3 Estimators of Semivariance

Under the constant mean assumption,Matheron [6] used the following (classical)
estimator:

2
̂ (h) �
1

jN (h)j

X
N(h)

[Z (si)� Z (sj)]
2
: (3)

where
N (h) � fZ (si)� Z (sj) : si � sj = h; i; j = 1; : : : ; ng

and jN (h)j is the number of distinct pairs lagged by the vector h.
However, this is not the only estimator used by geostatisticians. For example,

Cressie and Hawkins [1] de�ned the following robust estimator:

2�
 (h) �

�
1

jN(h)j

P
N(h) jZ (si)� Z (sj)j

1
2

�4
0:457 + 0:494

jN(h)j

(4)

(termed the Mean Fourth Root estimator). Also, Cressie [2] gives another robust
estimator:

2~
 (h) �
h
medfjZ (si) � Z (sj)j

1
2 : (si; sj) 2 N (h)g

i4
=B (h) (5)

(termed the Median Fourth Root estimator) where

B (h) = 0:457 +
0:494

jN (h)j
:

Deutsch and Journel [3] give the Semimadogram (mean absolute di�erence):

2�
 (h) �
1

jN (h)j

X
N(h)

jZ (si)� Z (sj)j ; (6)

the Semirodogram (root of di�erence):

2�
 (h) �
1

jN (h)j

X
N(h)

q
jZ (si) � Z (sj)j; (7)

the General Relative Semivariogram:

2�
 (h) �

̂�

m
�h

+m
+h

2

�2 ; (8)
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Figure 1: Comparison of semivariance estimators1(after [2]).

where

m
�h

=
1

jN (h)j

X
N(h)

Z (si)

and

m+h =
1

jN (h)j

X
N(h)

Z (sj) ;

and the Pairwise Relative Semivariogram

2�
 (h) �
1

jN (h)j

X
N(h)

Z (si) � Z (sj)�
Z(si)+Z(sj )

2

�2 (9)

Currently, only eqn. 3 (see �g. 1) is used in m.svfit. The others (eqn. 5 and
9) may be added in future versions.

4 Lag Settings

Important to note here is that, for stability reasons, the lag distance is de�ned
as \any integral multiple of the sampling interval [7]." In other words, given

1For validation, the results on page 82 of Cressie's book [2] were calculated using this
software. A lag vector of (1� 0; 90� 1�) was used. Results were exactly the same for the
number of signi�cant digits given.
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Figure 2: Groupings of lags by distance and direction (after [7]). The distance
OL is an integral multiple of the sampling interval in the � direction. Journel
and Huijbregts [5] recommend that the number of distinct paris of (si; sj) in
the \tolerance" region be at least 30.

a vector h (the minimum lag vector), semivariance is computed at h, ch, 2ch,
3ch, : : : nch:

For irregularly{spaced data, this will not work since most points will never
be separated exactly by any multiple of h. Usually, for two{dimensional data,
lag directions may be grouped, as in �gure 2. If one sample point is at the origin
and another sample points is L� � units away in the ��� direction, then these
two may be grouped together.

Because of the calculation of the angle for h, s.sv may not work properly
for lat-long data.

The sample variogram computed by s.sv may be directional or omnidi-
rectional, depending upon if an argument is given for the angle option. For
omnidirectional semivariograms, only L � � is used as the pairing criteria (i.e.,
only jjhjj is considered).

5 Model Fitting

Several models are used to represent semivariograms. Usually, isotropy is as-
sumed so that the vector h becomes a scalar. Cressie [2] gives six basic models.
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Linear model (valid in IRd, d � 1):


 (h; �) =

�
0; h = 0

co + cljjhjj; h 6= 0
(10)

� = [co; cl]
0, where co � 0 and bl � 0.

Spherical Model (valid in IR1, IR2, and IR3):


 (h; �) =

8><
>:

0; h = 0

co + cs

n
3
2 (jjhjj=as)�

1
2 (jjhjj=as)

3
o
; 0 � jjhjj � as

co + cs jjhjj � as

(11)

� = [co; cs; as]
0, where co � 0, cs � 0, and as � 0:

Exponential model (valid in IRd, d � 1):


 (h; �) =

�
0; h = 0

co + ce f1� exp (�jjhjj=ae)g ; h 6= 0
(12)

� = [co; ce; ae]
0, where co � 0, ce � 0, and ae � 0.

Rational quadratic model (valid in IRd, d � 1):


 (h; �) =

(
0; h = 0

co + crjjhjj
�
1 + jjhjj

2
=ar

�
; h 6= 0

(13)

� = [co; cr; ar]
0, where co � 0, cr � 0, and ar � 0.

Hole e�ect (or wave) model (valid in IR1, IR2, and IR3):


 (h; �) =

�
0; h = 0

co + cw f1� aw sin (jjhjj=aw) =jjhjjg ; h 6= 0
(14)

� = [co; cw; ar]
0

, where co � 0, cw � 0, and ar � 0.

Power model (valid in IRd, d � 1):


 (h; �) =

�
0; h = 0

co + cpjjhjj
�
; h 6= 0

(15)

� = [co; cp; �]
0, where co � 0, cp � 0, and 0 � � < 2.

Weighted least-squares data �tting may be used, where jN (h)j is the weight

5



applied to each observation. If a least-squares problem is de�ned as

min
x

mX
j=1

h
(b� Ax)j

i2

then a weighted least-squares problem is de�ned as

min
x

mX
j=1

h
wj (b� Ax)j

i2

In this application,

min
c

mX
j=1

h
jN (h)jj (
 � Ac)j

i2
:

Recall � =
�
[c]0 t a

�0
where t denotes matrix augmentation with the parameter

vector [c] and the range parameter a.
For m.svfit to use weighted least squares, the -w 
ag should be used.

6 Example Application: Coal Ash Data

As with most software, usage may best be described by a short example. For
s.sv and m.svfit, we will begin with the coal ash measurements (slightly mod-
i�ed) used by Cressie [2]. A GRASS database location was created for this data
and they were imported using s.in.ascii.

The remainder of this example assumes that you are already running the
GRASS shell (though the shell prompt is indicated by the string \%").
% s.out.ascii -d coalash | head -3

1 16 11.170000

1 15 9.920000

1 14 10.210000

After starting a graphics monitor (using d.mon), we may display site loca-
tions using d.sites or by following the following dialogue with g.gnuplot:
% g.gnuplot

gnuplot: set nokey

gnuplot: set title "Locations of Coalash Samples"

gnuplot: set xlabel "Easting"

gnuplot: set ylabel "Northing"

gnuplot: plot '< s.out.ascii coalash'

The plot of locations produced using g.gnuplot is shown in �gure 3. The
data appear gridded, though not every point on the 16� 23 grid has a value.
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Figure 3: Location of coalash samples.

6.1 Know Your Data

The �rst and most important step in geostatistical analysis is becoming familiar
with the data. This includes much more than just knowing the �lename and
path! It can sometimes be very useful to know answers to: Who collected your
data? When was it collected (hour, day, month, season, year)? How was it
collected? What instrument was used? How accurate is the instrument for
location? for dependent variables? Answers to these questions and more can
help with interpretation of statistics calculated by s.univar and s.sv. For the
coalash data, s.univar computes the following:
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number of points 208
mean 9.77856

standard deviation 1.27643
coe�cient of variation 13.0534

skewness 1.17259
kurtosis 5.8772

mean of squares 97.2416
mean of absolute values 9.77856

minimum 7
�rst quartile 8.96

median 9.785
third quartile 10.575

maximum 17.61

Also useful here would be a histogramor perhaps a probability plot (see s.probplt).
Checking for normality, s.normal computes a chi-square statistic of x2 = 396
with � = 29 degrees of freedom. Since �229;0:05 = 42:6, we may conclude, at an
� = 0:05 level, that the data are not normal.

6.2 Sample Semivariogram for Coalash

The following command computes the sample semivariogram with a nominal
lag distance of 1 and saves a g.gnuplot data and instruction �le to ash.dat

and ash.gp, respectively, in the current working directory:

% s.sv -p coalash.dat lag=1 gr=ash

The sample semivariogram is plotted in the GRASS graphics window. It has
been reproduced in �gure 4. Notice that after about jjhjj = 16, 
 (�) drops o�.
This may be because N (h) also drops o� since fewer pairs are separated by
larger lags. We may wish to trim the sample semivariogram at this point.

6.3 Semivariogram Model for Coalash

For this example, we will �t a spherical model (eqn. 11) to the trimmed sample
semivariogram using m.svfit. For this step, after deciding upon a particular
model, we select a range by trail-and-error until the model �ts satisfactory.

The following command plots the �tted spherical model with a range of 10:

% s.sv -q coalash.dat lag=1 | head -16 | m.svfit -wp m=2 r=10

16 samples found, 10 below range

Weighted least squares reg ... 100%

model = Spherical

range = 10

sill = 1.63511
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Figure 4: Sample semivariogram of coalash samples.

nugget = 1.09554

c1 = 0.539571

The graphical output has been reproduced in �gure 5. This command may be
repeated several times for di�erent values for the range.
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Figure 5: Spherical semivariogram of coalash samples.
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