
The doc and shortvrb Packages∗

Frank Mittelbach†‡§

Printed January 29, 2025

This file is maintained by the LATEX Project team.
Bug reports can be opened (category latex) at
https://latex-project.org/bugs.html.

Abstract

Roughly 30 years ago (version 1.0 was dated 1988/05/05) I wrote the
first version of the doc package, a package to provide code documentation
for TEX code. Since then it has been used all over the place to document
the LATEX kernel and most of the packages that are nowadays available. The
core code of version 2 (which is the current version) exists since 1998, i.e.,
for 20 years.

If I would restart from scratch I would do a lot of things differently these
days and in fact several other people have tried to come up with better
solutions. However, as the saying goes, a bad standard is better than none,
doc has prevailed and changing it now in incompatible ways is probably not
really helpful.

So this is version 3 of the package with some smaller extensions that are
upwards compatible but hopefully serve well. Most important modifications
are the integration of the hypdoc package to enable links within the document
(in particular from the index) if so desired. Also integrated are the ideas
from the DoX package by Didier Verna (although I offer a different interface
that imho fits better with the rest of doc’s interfaces). Finally I updated a
few odds and ends.

∗This file has version number v3.0q dated 2024/10/23.
†Further commentary added at Royal Military College of Science by B. Hamilton Kelly;

English translation of parts of the original German commentary provided by Andrew Mills;
fairly substantial additions, particularly from newdoc, and documentation of post-v1.5q features
added at v1.7a by Dave Love (SERC Daresbury Lab).

‡Extraction of shortvrb package added by Joachim Schrod (TU Darmstadt).
§Version 3 now integrates code from Didier Verna’s DoX package and some of his documenta-

tion was reused (a.k.a. stolen).

1

https://latex-project.org/bugs.html

Contents

1 Introduction 3

2 The User Interface 3
2.1 The driver file 3
2.2 Package options 4
2.3 General conventions . . . 4
2.4 Describing the usage of

macros and environments 5
2.5 Describing the definition

of macros and environ-
ments 6

2.6 Formatting names in the
margin 6

2.7 Providing further docu-
mentation items 7

2.8 Displaying sample code
verbatim 8

2.9 Using a special escape
character 8

2.10 Cross-referencing all
macros used 9

2.11 Producing the actual in-
dex entries 9

2.12 Setting the index entries . 11
2.13 Changing the default val-

ues of style parameters . . 11
2.14 Short input of verbatim

text pieces 12
2.15 Additional bells and

whistles 12

3 Examples and basic usage
summary 14
3.1 Basic usage summary . . . 14
3.2 Examples 15

4 Incompatibilities between
version 2 and 3 17

5 Old interfaces no longer re-
ally needed 18
5.1 makeindex bugs 18
5.2 File transmission issues . 18

6 Introduction to previous re-
leases 19

7 The Description of Macros 22
7.1 Keys supported by doc . . 22
7.2 Processing the package

keys 23
7.3 Macros surrounding the

‘definition parts’ 24
7.4 Macros for the ‘docu-

mentation parts’ 30
7.5 Formatting the margin . . 32
7.6 Creating index entries by

scanning ‘macrocode’ . . . 32
7.7 Macros for scanning

macro names 34
7.8 The index exclude list . . 37
7.9 Macros for generating in-

dex entries 43
7.10 Redefining the index en-

vironment 45
7.11 Dealing with the change

history 48
7.12 Bells and whistles 51
7.13 Providing a checksum

and character table 56
7.14 Attaching line numbers

to code lines 58
7.15 Layout Parameters for

documenting package files 59
7.16 Changing the \catcode

of % 60
7.17 GetFileInfo 61

8 Integrating hypdoc 61

9 Integrating the DoX package
code 62
9.1 DoX environments 62
9.2 doc descriptions 64
9.3 API construction 65
9.4 API creation 67
9.5 Setting up the default

doc elements 70
9.5.1 Macro facilities . . 70
9.5.2 Environment fa-

cilities 71

10 Misc additions 71

2

1 Introduction
This is a new version of the doc package, written roughly 30 years after the initial
release. As the package has been used for so long (and largely unchanged) it is
absolutely important to preserve existing interfaces, even if we can agree that they
could have been done better.

So this is a light-weight change, basically adding hyperlink support and adding
a way to provide generally doc elements (not just macros and environments) and
try to do this properly (which wasn’t the case for environments either in the past).
The ideas for this have been stolen from the DoX package by Didier Verna even
though I didn’t keep his interfaces.

Most of the documentation below is from the earlier release which accounts for
some inconsistencies in presentation, mea culpa.

2 The User Interface

2.1 The driver file
If one is going to document a set of macros with the doc package one has to
prepare a special driver file which produces the formatted document. This driver
file has the following characteristics:

\documentclass[⟨options⟩]{⟨document-class⟩}
\usepackage{doc}

⟨preamble⟩
\begin{document}

⟨special input commands⟩
\end{document}

The ⟨document-class⟩ might be any document class, I usually use article.
In the ⟨preamble⟩ one should place declarations which manipulate the behavior

of the doc package like \DisableCrossrefs or \OnlyDescription.
Finally the ⟨special input commands⟩ part should contain one or more\DocInput

\IndexInput \DocInput{⟨file name⟩} and/or \IndexInput{⟨file name⟩} commands. The
\DocInput command is used for files prepared for the doc package whereas
\IndexInput can be used for all kinds of macro files. See page 13 for more details
of \IndexInput. Multiple \DocInputs can be used with a number of included
files which are each self-contained self-documenting packages—for instance, each
containing \maketitle.

As an example, the driver file for the doc package itself is the following text
surrounded by %<*driver> and %</driver>. To produce the documentation you
can simply run the .dtx file through LATEX in which case this code will be executed
(loading the document class ltxdoc, etc.) or you can extract this into a separate
file by using the docstrip program. The line numbers below are added by doc’s
formatting. Note that the class ltxdoc has the doc package preloaded.

1 ⟨∗driver⟩
2 \documentclass{ltxdoc}
3
4 \usepackage[T1]{fontenc}

3

5 \usepackage{xspace}
6
7 \OnlyDescription
8
9 \EnableCrossrefs

10 %\DisableCrossrefs % Say \DisableCrossrefs if index is ready
11 \CodelineIndex
12 \RecordChanges % Gather update information
13 \SetupDoc{reportchangedates}
14 %\OnlyDescription % comment out for implementation details
15 \setlength\hfuzz{15pt} % don’t show so many
16 \hbadness=7000 % over- and underfull box warnings
17 \begin{document}
18 \DocInput{doc.dtx}
19 \end{document}
20 ⟨/driver⟩

2.2 Package options
Starting with version 3 the doc package now offers a small number of packageNew in v3
options to modify its overall behavior. These are:

hyperref, nohyperref Boolean (default true). Load the hyperref package and
make index references to code lines and pages and other items clickable links.
nohyperref is the complementary key.

multicol, nomulticol Boolean (default true). Load the multicol package for
use in typesetting the index and the list of changes. nomulticol is the
complementary key.

debugshow Boolean (default false). Provide various tracing information at the
terminal and in the transcript file. In particular show which elements are
indexed.

noindex Boolean (default false). If set, all automatic indexing is suppressed.
This option can also be used on individual elements as described below.

noprint Boolean (default false). If set, then printing of element names in the
margin will be suppressed. This option can also be used on individual ele-
ments as described below.

reportchangedates Boolean (default false). If set, then change entries list the
date after the version number in the change log.

Instead of providing options to the doc package you can call \SetupDoc and\SetupDoc
provide them there. This allows, for example, to change default values in case doc
was already loaded earlier.

2.3 General conventions
A TEX file prepared to be used with the ‘doc’ package consists of ‘documentation
parts’ intermixed with ‘definition parts’.

4

Every line of a ‘documentation part’ starts with a percent sign (%) in column
one. It may contain arbitrary TEX or LATEX commands except that the char-
acter ‘%’ cannot be used as a comment character. To allow user comments,
the characters ^^A and ^^X are both defined as a comment character later on.1
Such ‘metacomments’ may be also be included simply by surrounding them with
\iffalse . . . \fi.

All other parts of the file are called ‘definition parts’. They contain fractions
of the macros described in the ‘documentation parts’.

If the file is used to define new macros (e.g. as a package file in the \usepackage
macro), the ‘documentation parts’ are bypassed at high speed and the macro
definitions are pasted together, even if they are split into several ‘definition parts’.

On the other hand, if the documentation of these macros is to be produced,macrocode (env.)
the ‘definition parts’ should be typeset verbatim. To achieve this, these parts are
surrounded by the macrocode environment. More exactly: before a ‘definition
part’ there should be a line containing

%␣␣␣␣\begin{macrocode}

and after this part a line

%␣␣␣␣\end{macrocode}

There must be exactly four spaces between the % and \end{macrocode} — TEX is
looking for this string and not for the macro while processing a ‘definition part’.

Inside a ‘definition part’ all TEX commands are allowed; even the percent sign
could be used to suppress unwanted spaces etc.

Instead of the macrocode environment one can also use the macrocode∗ en-macrocode* (env.)
vironment which produces the same results except that spaces are printed as ␣
characters.

2.4 Describing the usage of macros and environments
When you describe a new macro you may use \DescribeMacro to indicate that\DescribeMacro
at this point the usage of a specific macro is explained. It takes one argument
which will be printed in the margin and also produces a special index entry. For
example, I used \DescribeMacro{\DescribeMacro} to make clear that this is the
point where the usage of \DescribeMacro is explained.

As the argument to \DescribeMacro is a command name, many people got
used to using the (incorrect) short form, i.e., omitting the braces around the
argument as in \DescribeMacro\foo. This does work as long as the macro name
consists only of “letters”. However, if the name contains special characters that are
normally not of type “letter” (such as @, or in case of expl3 _ and :) this will fail
dramatically. \DescribeMacro would then receive only a partial command name
(up to the first “non-letter”) e.g., \DescribeMacro\foo@bar would be equivalent
to \DescribeMacro{\foo} @bar and you can guess that this can resulting in both
incorrect output and possibly low-level error messages.

An analogous macro \DescribeEnv should be used to indicate that a LATEX\DescribeEnv
environment is explained. It will produce a somewhat different index entry and a
slightly different display in the margin. Below I used \DescribeEnv{verbatim}.

Starting with version 3 the \Describe... commands accept an optional ar-New in v3
1In version 2 it was only ^^A, but many keyboards combine ^ and A and automatically turn

it into “Ä”; so ^^X was added as an alternative in version 3.

5

gument in which you can specify either noindex or noprint to suppress indexing
or printing for that particular instance. Using both would be possible too, but
pointless as then the commands wouldn’t do anything any more.

2.5 Describing the definition of macros and environments
To describe the definition of a (new) macro we use the macro environment. It hasmacro (env.)
one argument: the name of the new macro.2 This argument is also used to print
the name in the margin and to produce an index entry. Actually the index entries
for usage and definition are different to allow an easy reference. This environment
might be nested. In this case the labels in the margin are placed under each
other. There should be some text—even if it’s just an empty \mbox{}—in this
environment before \begin{macrocode} or the marginal label won’t print in the
right place.

In fact it is now allowed to specify several macros in the argument, separatedNew in v3
by commas. This is a short form for starting several macro environments in direct
succession. Of course, you should then have also only one matching \end{macro}.

There also exist four style parameters: \MacrocodeTopsep and \MacroTopsep\MacrocodeTopsep (skip)
\MacroTopsep (skip) are used to control the vertical spacing above and below the macrocode and

the macro environment, \MacroIndent is used to indent the lines of code and\MacroIndent (dimen)
\MacroFont holds the font and a possible size change command for the code\MacroFont

lines, the verbatim[*] environment and the macro names printed in the margin.
If you want to change their default values in a class file (like ltugboat.cls)
use the \DocstyleParms command described below. Starting with release 2.0a
it can now be changed directly as long as the redefinition happens before the
\begin{document} (if you change it later you might see strange typesetting ef-
fects if you are unlucky).

\MacroFont does not alter the font of \verb or \verb* because it is often used
to make the font size of the code displays smaller, which would look odd if used
within a paragraph. If you decide to use a different font family and want to use
the same family with \verb you need to alter the font setup for \ttfamily in
addition to \MacroFont.

For documenting the definition of environments one can use the environmentenvironment (env.)
environment which works like the macro environment, except that it expects an
⟨env-name⟩ (without a backslash) as its argument and internally provides different
index entries suitable for environments. Nowadays you can alternatively specify a
comma-separated list of environments.

Starting with version 3 these environments accept an optional argument inNew in v3
which you can specify noindex or noprint or both to suppress indexing or printing
for that particular instance. If any such setting is made on the environment level it
overwrites whatever default was given when the doc element was defined or when
the package was loaded.

2.6 Formatting names in the margin
As mentioned earlier, some macros and environment print their arguments in\PrintDescribeMacro

\PrintDescribeEnv
\PrintMacroName

\PrintEnvName

2This is a change to the style design I described in TUGboat 10#1 (Jan. 89). We finally
decided that it would be better to use the macro name with the backslash as an argument.

6

the margin. The actual formatting is done by four macros which are user defin-
able.3 They are named \PrintDescribeMacro and \PrintDescribeEnv (defin-
ing how \DescribeMacro and \DescribeEnv behave) and \PrintMacroName and
\PrintEnvName (called by the macro and environment environments, respec-
tively).

2.7 Providing further documentation items
Out of the box the doc package offers the above commands and environments to
document macros and environments. With version 3 this has now been extended inNew in v3
a generic fashion so that you can easily provide your own items, such as counters,
length register, options etc.

The general syntax for providing a new doc element is\NewDocElement

\NewDocElement[⟨options⟩]{⟨element-name⟩}{⟨env-name⟩}

By convention the ⟨element-name⟩ has the first letter uppercased as in Env or
Macro.

Such a declaration will define for you

• the command \Describe⟨element-name⟩ which has the syntax

\Describe⟨element-name⟩[⟨options⟩]{⟨element⟩}

• the environment ⟨env-name⟩ which has the syntax

\begin{⟨env-name⟩}[⟨options⟩]{⟨element⟩}

• the display command \PrintDescribe⟨element-name⟩ with the syntax

\PrintDescribe⟨element-name⟩{⟨element⟩}

• and the \Print⟨element-name⟩Name display command for the environment.

If any of the commands or the environment is already defined (which especially
with the ⟨env-name⟩ is a danger) then you will receive an error telling you so.

If you want to modify an existing doc element use \RenewDocElement instead.\RenewDocElement
For example, the already provided “Env” doc element could have been defined

simply by making the declaration \NewDocElement{Env}{environment} though
that’s not quite what has been done, as we will see later.

This declaration does nothing when the doc element is already declared, oth-\ProvideDocElement
erwise it works like \NewDocElement. It can be useful if you have many documen-
tation files that you may want to process individually as well as together.

The ⟨options⟩ are keyword/value and define further details on how that doc
element should behave. They are:

macrolike Boolean (default false). Does this doc element starts with a back-
slash?

envlike Boolean. Complementary option to macrolike.
3You may place the changed definitions in a separate package file or at the beginning of the

documentation file. For example, if you don’t like any names in the margin but want a fine index
you can simply redefine them accept their argument and do nothing with it.

7

toplevel Boolean (default true). Should all a top-level index entry be made?
If set to false then either no index entries are produced or only grouped
index entries (see idxgroup for details).

notoplevel Boolean. Complementary option to toplevel.

idxtype String (default ⟨env-name⟩). What to put (in parentheses if non-empty)
at the end of a top-level index entry.

printtype String (default ⟨env-name⟩). What to put (in parentheses if non-
empty) after an element name in the margin.

idxgroup String (default ⟨env-name⟩s). Name of the top-level index entry if
entries are grouped. They are only grouped if this option is non-empty.

noindex Boolean (default false). If set this will suppress indexing for elements
of this type. This setting overwrite any global setting of noindex.

noprint Boolean (default false). If set this will suppress printing the element
name in the margin. This setting overwrite any global setting of noprint.

As usual giving a boolean option without a value sets it to true.

2.8 Displaying sample code verbatim
It is often a good idea to include examples of the usage of new macros in the text.verbatim (env.)
Because of the % sign in the first column of every row, the verbatim environment
is slightly altered to suppress those characters.4 The verbatim∗ environment isverbatim* (env.)
changed in the same way. The \verb command is re-implemented to give an\verb
error report if a newline appears in its argument. The verbatim and verbatim∗
environments set text in the style defined by \MacroFont (§2.5).

2.9 Using a special escape character
If one defines complicated macros it is sometimes necessary to introduce a new\SpecialEscapechar
escape character because the ‘\’ has got a special \catcode. In this case one can
use \SpecialEscapechar to indicate which character is actually used to play the
rôle of the ‘\’. A scheme like this is needed because the macrocode environment
and its counterpart macrocode∗ produce an index entry for every occurrence of a
macro name. They would be very confused if you didn’t tell them that you’d
changed \catcode s. The argument to \SpecialEscapechar is a single-letter
control sequence, that is, one has to use \| for example to denote that ‘|’ is
used as an escape character. \SpecialEscapechar only changes the behavior of
the next macrocode or macrocode∗ environment.

The actual index entries created will all be printed with \ rather than |, but this
probably reflects their usage, if not their definition, and anyway must be preferable
to not having any entry at all. The entries could be formatted appropriately, but
the effort is hardly worth it, and the resulting index might be more confusing (it
would certainly be longer!).

4These macros were written by Rainer Schöpf [8]. He also provided a new verbatim environ-
ment which can be used inside of other macros.

8

2.10 Cross-referencing all macros used
As already mentioned, every macro name used within a macrocode or macrocode∗\DisableCrossrefs

\EnableCrossrefs environment will produce an index entry. In this way one can easily find
out where a specific macro is used. Since TEX is considerably slower5 when
it has to produce such a bulk of index entries one can turn off this feature
by using \DisableCrossrefs in the driver file. To turn it on again just use
\EnableCrossrefs.6

But also finer control is provided. The \DoNotIndex macro takes a list of\DoNotIndex
macro names separated by commas. Those names won’t show up in the index.
You might use several \DoNotIndex commands: their lists will be concatenated.
In this article I used \DoNotIndex for all macros which are already defined in
LATEX.

All three above declarations are local to the current group.
Production (or not) of the index (via the \makeindex command) is controlled

by using or omitting the following declarations in the driver file preamble; if
neither is used, no index is produced. Using \PageIndex makes all index en-\PageIndex
tries refer to their page number; with \CodelineIndex, index entries produced\CodelineIndex
by \DescribeMacro and \DescribeEnv and possibly further \Describe... com-
mands refer to a page number but those produced by the macro environment (or
other doc element environments) refer to the code lines, which will be numbered
automatically.7 The style of this numbering can be controlled by defining the\theCodelineNo
macro \theCodelineNo. Its default definition is to use scriptsize arabic numerals;
a user-supplied definition won’t be overwritten.

When you don’t wish to get an index but want your code lines numbered use\CodelineNumbered
\CodelineNumbered instead of \CodelineIndex. This prevents the generation of
an unnecessary .idx file.

2.11 Producing the actual index entries
Several of the aforementioned macros will produce some sort of index entries.
These entries have to be sorted by an external program—the current implemen-
tation assumes that the makeindex program by Chen [4] is used.

But this isn’t built in: one has only to redefine some of the following macros
to be able to use any other index program. All macros which are installation de-
pendent are defined in such a way that they won’t overwrite a previous definition.
Therefore it is safe to put the changed versions in a package file which might be
read in before the doc package.

To allow the user to change the specific characters recognized by his or her index
program all characters which have special meaning in the makeindex program are
given symbolic names.8 However, all characters used should be of \catcode other
than ‘letter’ (11).

5This comment was written about 30 years ago. TEX is still considerably slower but while
it took minutes to process a large document (such as the LATEX kernel documentation) it takes
seconds or less these days. Thus \DisableCrossrefs isn’t really that necessary these days.

6Actually, \EnableCrossrefs changes things more drastically; any following call to
\DisableCrossrefs which might be present in the source will be ignored.

7The line number is actually that of the first line of the first macrocode environment in the
macro environment.

8I don’t know if there exists a program which needs more command characters, but I hope
not.

9

The \actualchar is used to separate the ‘key’ and the actual index entry. The\actualchar
\quotechar \quotechar is used before a special index program character to suppress its special

meaning. The \encapchar separates the indexing information from a letter string\encapchar
which makeindex uses as a TEX command to format the page number associated
with a special entry. It is used in this package to apply the \main and the \usage
commands. Additionally \levelchar is used to separate ‘item’, ‘subitem’ and\levelchar
‘subsubitem’ entries.

It is a good idea to stick to these symbolic names even if you know which index
program is used. In this way your files will be portable.

TODO: describe old \SpecialMainIndex and \SpecialUsageIndex
To produce a main index entry for a macro the \SpecialMainMacroIndex\SpecialMainMacroIndex

\SpecialMainEnvIndex macro9 may be used. It is called ‘special’ because it has to print its argument
verbatim. A similar macro, called \SpecialMainEnvIndex is used for indexing
the main definition point of an environment.10

To index the usage of a macro or an environment \SpecialMacroIndex and\SpecialMacroIndex
\SpecialEnvIndex \SpecialEnvIndex may be used.

All these macros are normally used by other macros; you will need them only
in an emergency.

If further code elements are declared with \NewDocElement{⟨name⟩}... thenNew in v3
this sets up additional indexing commands, e.g., \SpecialMain⟨name ⟩Index.

The macrocode environment is automatically indexing macros (normally by\SpecialIndex
code line number). You can (with care) also do this manually by \SpecialIndex.
However, note that if \CodelineIndex is used this will generate an entry referring
to the last code line which is usually not what you want. It does, however, make
some sense if you always refer to pages only, i.e., if you use \PageIndex.

For single character macros, e.g., \{, doesn’t always work correctly. For this\SpecialShortIndex

New in v3 reason there is now also a special variant the can produce correct index entries for
them.

Additionally a \SortIndex command is provided. It takes two arguments—the\SortIndex
sort key and the actual index entry.

But there is one characteristic worth mentioning: all macro names in the index\verbatimchar
are typeset with the \verb* command. Therefore one special character is needed
to act as a delimiter for this command. To allow a change in this respect, again
this character is referenced indirectly, by the macro \verbatimchar. It expands
by default to + but if your code lines contain macros with ‘+’ characters in their
names (e.g. when you use \+) then that caused a problem because you ended up
with an index entry containing \verb+\++ which will be typeset as ‘\+’ and not
as ‘\+’. In version 3 this is now automatically taken care of (with the help of theNew in v3
\SpecialShortIndex command).

We also provide a * macro. This is intended to be used for index entries like*

index entries
Special macros for ˜

Such an entry might be produced with the line:

\index{index entries\levelchar Special macros for *}
9This macro is called by the macro environment.

10This macro is called by the environment environment.

10

2.12 Setting the index entries
After the first formatting pass through the .dtx file you need to sort the index
entries written to the .idx file using makeindex or your favorite alternative. You
need a suitable style file for makeindex (specified by the -s switch). A suitable one
is supplied with doc, called gind.ist.

To read in and print the sorted index, just put the \PrintIndex command\PrintIndex
as the last (commented-out, and thus executed during the documentation pass
through the file) command in your package file. Precede it by any bibliography
commands necessary for your citations. Alternatively, it may be more convenient
to put all such calls amongst the arguments of the \MaybeStop macro, in which
case a \Finale command should appear at the end of your file.

Contrary to standard LATEX, the index is typeset in three columns by de-theindex (env.)
fault. This is controlled by the LATEX counter ‘IndexColumns’ and can thereforeIndexColumns (counter)
be changed with a \setcounter declaration. Additionally one doesn’t want to
start a new page unnecessarily. Therefore the theindex environment is redefined.
When the theindex environment starts it will measure how much space is left on\IndexMin (dimen)
the current page. If this is more than \IndexMin then the index will start on this
page. Otherwise \newpage is called.

Then a short introduction about the meaning of several index entries is typeset
(still in onecolumn mode). Afterwards the actual index entries follow in multi-
column mode. You can change this prologue with the help of the \IndexPrologue\IndexPrologue
macro. Actually the section heading is also produced in this way, so you’d better
write something like:

\IndexPrologue{\section*{Index} The index entries underlined ...}

When the theindex environment is finished the last page will be reformatted to
produce balanced columns. This improves the layout and allows the next article to
start on the same page. Formatting of the index columns (values for \columnssep\IndexParms
etc.) is controlled by the \IndexParms macro. It assigns the following values:

\parindent = 0.0pt \columnsep = 15.0pt
\parskip = 0.0pt plus 1.0pt \rightskip = 15.0pt
\mathsurround= 0.0pt \parfillskip=−15.0pt

Additionally it defines \@idxitem (which will be used when an \item command\@idxitem
is encountered) and selects \small size. If you want to change any of these values
you have to define them all.

The page numbers for main index entries are encapsulated by the \main macro\main
\usage
\code

(underlining its argument) and the numbers denoting the description are encap-
sulated by the \usage macro (which produces italics). \code encapsulates page
or code line numbers in entries generated by parsing the code inside macrocode
environments. As usual these commands are user definable.

2.13 Changing the default values of style parameters
If you want to overwrite some default settings made by the doc package, you can\DocstyleParms
either put your declarations in the driver file (that is after doc.sty is read in) or
use a separate package file for doing this work. In the latter case you can define
the macro \DocstyleParms to contain all assignments. This indirect approach is

11

necessary if your package file might be read before the doc.sty, when some of the
registers are not allocated. Its default definition is null.

The doc package currently assigns values to the following registers:

\IndexMin = 80.0pt \MacroTopsep = 7.0pt plus 2.0pt minus 2.0pt
\marginparwidth= 126.0pt \MacroIndent = 18.63434pt
\marginparpush = 0.0pt \MacrocodeTopsep= 3.0pt plus 1.2pt minus 1.0pt
\tolerance = 1000

2.14 Short input of verbatim text pieces
It is awkward to have to type, say, \verb|. . . | continually when quoting verbatim\MakeShortVerb

\MakeShortVerb*
\DeleteShortVerb

bits (like macro names) in the text, so an abbreviation mechanism is provided. Pick
a character ⟨c⟩—one which normally has catcode ‘other’ unless you have very good
reason not to—which you don’t envisage using in the text, or not using often. (I
like ", but you may prefer | if you have " active to do umlauts, for instance.) Then
if you say \MakeShortVerb{\⟨c⟩} you can subsequently use ⟨c⟩⟨text⟩⟨c⟩ as the
equivalent of \verb⟨c⟩⟨text⟩⟨c⟩; analogously, the *-form \MakeShortVerb*{\⟨c⟩}
gives you the equivalent of \verb*⟨c⟩⟨text⟩⟨c⟩. Use \DeleteShortVerb{\⟨c⟩} if
you subsequently want ⟨c⟩ to revert to its previous meaning—you can always turn
it on again after the unusual section. The ‘short verb’ commands make global
changes. The abbreviated \verb may not appear in the argument of another com-
mand just like \verb. However the ‘short verb’ character may be used freely in
the verbatim and macrocode environments without ill effect. \DeleteShortVerb
is silently ignored if its argument does not currently represent a short verb char-
acter. Both commands type a message to tell you the meaning of the character is
being changed.

Please remember that the command \verb cannot be used in arguments of
other commands. Therefore abbreviation characters for \verb cannot be used
there either.

This feature is also available as a sole package, shortvrb.

2.15 Additional bells and whistles
We provide macros for logos such as Web, AMS-TEX, BibTEX, SLiTEX and
Plain TEX. Just type \Web, \AmSTeX, \BibTeX, \SliTeX or \PlainTeX, respec-
tively. LATEX and TEX are already defined in latex.tex.

Another useful macro is \meta which has one argument and produces some-\meta
thing like ⟨dimen parameter⟩.

You can use the \OnlyDescription declaration in the driver file to suppress\OnlyDescription
\MaybeStop

\StopEventually
the last part of your document (which presumably exhibits the code). To make
this work you have to place the command \MaybeStop at a suitable point in your

New in v3 file. This macro11 has one argument in which you put all information you want to
see printed if your document ends at this point (for example a bibliography which
is normally printed at the very end). When the \OnlyDescription declaration

11For about 30 years this macro was called \StopEventually which was due to a “false friend”
misunderstanding. In the German language the word “eventuell” mean roughly “perhaps” which
isn’t quite the same as “eventually”. But given that this is now used for so long and all over
the place we can’t drop the old name. So it is still there to allow processing all the existing
documentation.

12

is missing the \MaybeStop macro saves its argument in a macro called \Finale\Finale
which can afterwards be used to get things back (usually at the very end). Such
a scheme makes changes in two places unnecessary.

Thus you can use this feature to produce a local guide for the TEX users which
describes only the usage of macros (most of them won’t be interested in your
definitions anyway). For the same reason the \maketitle command is slightly\maketitle
changed to allow multiple titles in one document. So you can make one driver file
reading in several articles at once. To avoid an unwanted pagestyle on the title\ps@titlepage
page the \maketitle command issues a \thispagestyle{titlepage} declaration
which produces a plain page if the titlepage page style is undefined. This allows
class files like ltugboat.cls to define their own page styles for title pages.

Typesetting the whole document is the default. However, this default can also\AlsoImplementation
be explicitly selected using the declaration \AlsoImplementation. This over-
writes any previous \OnlyDescription declaration. The LATEX2ε distribution,
for example, is documented using the ltxdoc class which allows for a configura-
tion file ltxdoc.cfg. In such a file one could then add the statement

\AtBeginDocument{\AlsoImplementation}

to make sure that all documents will show the code part.
Last but not least I defined an \IndexInput macro which takes a file name as\IndexInput

an argument and produces a verbatim listing of the file, indexing every command
as it goes along. This might be handy, if you want to learn something about macros
without enough documentation. I used this feature to cross-reference latex.tex
getting a verbatim copy with about 15 pages index.12

To maintain a change history within the file, the \changes command may be\changes
placed amongst the description part of the changed code. It takes three arguments,
thus:

\changes{⟨version⟩}{⟨date⟩}{⟨text⟩}

The changes may be used to produce an auxiliary file (LATEX’s \glossary mech-
anism is used for this) which may be printed after suitable formatting. The
\changes macro generates the printed entry in such a change history; because
old versions13 of the makeindex program limit such fields to 64 characters, care
should be taken not to exceed this limit when describing the change. The actual
entry consists of the ⟨version⟩, the \actualchar, the current macro name, a colon,
the \levelchar, and, finally, the ⟨text⟩. The result is a glossary entry for the
⟨version⟩, with the name of the current macro as subitem. Outside the macro en-
vironment, the text \generalname is used instead of the macro name. When refer-
ring to macros in change descriptions it is conventional to use \cs{⟨macroname⟩}
rather than attempting to format it properly and using up valuable characters in
the entry with old makeindex versions.

Note that in the history listing, the entry is shown with the page number
that corresponds to its place in the source, e.g., general changes put at the very
beginning of the file will show up with page number “1”, change entries placed
elsewhere might have different numbers (not necessarily always very useful unless
you are careful).

12It took quite a long time and the resulting .idx file was longer than the .dvi file. Actually
too long to be handled by the makeindex program directly (on our MicroVAX) but the final result
was worth the trouble.

13Before 2.6.

13

To cause the change information to be written out, include \RecordChanges in\RecordChanges
the driver file. To read in and print the sorted change history (in two columns), just\PrintChanges
put the \PrintChanges command as the last (commented-out, and thus executed
during the documentation pass through the file) command in your package file.
Alternatively, this command may form one of the arguments of the \MaybeStop
command, although a change history is probably not required if only the de-
scription is being printed. The command assumes that makeindex or some other
program has processed the .glo file to generate a sorted .gls file. You need a
special makeindex style file; a suitable one is supplied with doc, called gglo.ist.

The \GlossaryMin, \GlossaryPrologue and \GlossaryParms macros and the\GlossaryMin (dimen)
\GlossaryPrologue

\GlossaryParms
GlossaryColumns (counter)

counter GlossaryColumns are analogous to the \Index. . . versions. (The LATEX
‘glossary’ mechanism is used for the change entries.)

From time to time, it is necessary to print a \ without being able to use
\bslash the \verb command because the \catcode s of the symbols are already firmly

established. In this instance we can use the command \bslash presupposing, of
course, that the actual font in use at this point contains a ‘backslash’ as a symbol.
Note that this definition of \bslash is expandable; it inserts a \12. This means
that you have to \protect it if it is used in ‘moving arguments’.

If your macros \catcode anything other than @ to ‘letter’, you should redefine\MakePrivateLetters
\MakePrivateLetters so that it also makes the relevant characters ‘letters’ for
the benefit of the indexing. The default definition is just \makeatletter.

The ‘module’ directives of the docstrip system [6] are normally recognized and\DontCheckModules
\CheckModules

\Module
\AltMacroFont

invoke special formatting. This can be turned on and off in the .dtx file or the
driver file using \CheckModules and \DontCheckModules. If checking for module
directives is on (the default) then code in the scope of the directives is set as
determined by the hook \AltMacroFont, which gives small italic typewriter by
default in the New Font Selection Scheme but just ordinary small typewriter in
the old one, where a font such as italic typewriter can’t be used portably (plug
for NFSS); you will need to override this if you don’t have the italic typewriter
font available. Code is in such a scope if it’s on a line beginning with %< or is
between lines starting with %<*⟨name list⟩> and %</⟨name list⟩>. The directive is
formatted by the macro \Module whose single argument is the text of the directive
between, but not including, the angle brackets; this macro may be re-defined in
the driver or package file and by default produces results like ⟨+foo | bar⟩ with no
following space.

Sometimes (as in this file) the whole code is surrounded by modules to pro-StandardModuleDepth
(counter) duce several files from a single source. In this case it is clearly not appropriate

to format all code lines in a special \AltMacroFont. For this reason a counter
StandardModuleDepth is provided which defines the level of module nesting which
is still supposed to be formatted in \MacroFont rather then \AltMacroFont. The
default setting is 0, for this documentation it was set to

\setcounter{StandardModuleDepth}{1}

at the beginning of the file.

3 Examples and basic usage summary

3.1 Basic usage summary
To sum up, the basic structure of a .dtx file without any refinements is like this:

14

% ⟨waffle⟩. . .
. . .

% \DescribeMacro{\fred}
% ⟨description of fred’s use⟩

. . .
% \MaybeStop{⟨finale code⟩}

. . .
% \begin{macro}{\fred}
% ⟨commentary on macro fred⟩
%␣␣␣␣\begin{macrocode}
⟨code for macro fred⟩
%␣␣␣␣\end{macrocode}
% \end{macro}

. . .
% \Finale \PrintIndex \PrintChanges

For further examples of the use of most—if not all—of the features described
above, consult the doc.dtx source itself.

3.2 Examples
The default setup includes definitions for the doc elements “macro” and “environ-
ment”. They correspond to the following declarations:

\NewDocElement[macrolike = true ,
idxtype = ,
idxgroup = ,
printtype =

]{Macro}{macro}

\NewDocElement[macrolike = false ,
idxtype = env. ,
idxgroup = environments ,
printtype = \textit{env.}

]{Env}{environment}

To showcase the new features of doc version 3 to some extend, the current
documentation is done by redefining these declarations and also adding a few
additional declarations on top.

For any internal command we document we use Macro and put all of them
under the heading “LATEX commands” (note the use of \actualchar):

\RenewDocElement[macrolike = true ,
toplevel = false,
idxtype = ,
idxgroup = LaTeX commands\actualchar\LaTeX{} commands ,
printtype =

]{Macro}{macro}

We only have package environments so we use Env for those and group them
as well:

\RenewDocElement[macrolike = false ,
toplevel = false,
idxtype = env. ,

15

idxgroup = Package environments,
printtype = \textit{env.}

]{Env}{environment}

All the interface commands are also grouped together under the label “Package
commands”, we use InterfaceMacro for them:

\NewDocElement[macrolike = true ,
toplevel = false,
idxtype = ,
idxgroup = Package commands,
printtype =

]{InterfaceMacro}{imacro}

And since we also have a few obsolete interfaces we add yet another category:

\NewDocElement[macrolike = true ,
toplevel = false,
idxtype = ,
idxgroup = Package commands (obsolete),
printtype =

]{ObsoleteInterfaceMacro}{omacro}

Another type of category are the package keys:

\NewDocElement[macrolike = false ,
toplevel = false,
idxtype = key ,
idxgroup = Package keys ,
printtype = \textit{key}

]{Key}{key}

Finally we have TEX counters (with a backslash in front) and LATEX counters
(no backslash) and the two types of LATEX length registers:

\NewDocElement[macrolike = true ,
toplevel = false,
idxtype = counter ,
idxgroup = TeX counters\actualchar \protect\TeX{} counters ,
printtype = \textit{counter}

]{TeXCounter}{tcounter}

\NewDocElement[macrolike = false ,
toplevel = false,
idxtype = counter ,
idxgroup = LaTeX counters\actualchar \LaTeX{} counters ,
printtype = \textit{counter}

]{LaTeXCounter}{lcounter}

\NewDocElement[macrolike = true ,
toplevel = false,
idxtype = skip ,
idxgroup = LaTeX length\actualchar \LaTeX{} length (skip) ,
printtype = \textit{skip}

]{LaTeXSkip}{lskip}

16

\NewDocElement[macrolike = true ,
toplevel = false,
idxtype = dimen ,
idxgroup = LaTeX length\actualchar \LaTeX{} length (dimen) ,
printtype = \textit{dimen}

]{LaTeXDimen}{ldimen}

And we modify the appearance of the index: just 2 columns not 3 and all
the code-line entries get prefixed with an “ℓ” (for line) so that they can easily be
distinguished from page index entries.

\renewcommand\code[1]{\mbox{ℓ-#1}}
\renewcommand\main[1]{\underline{\mbox{ℓ-#1}}}
\setcounter{IndexColumns}{2}

4 Incompatibilities between version 2 and 3
The basic approach when developing version 3 was to provide a very high level of
compatibility with version 2 so that nearly all older documents should work out
of the box without the need for any adjustments.

But as with any change there are situations where that change can result
in some sort of incompatibility, e.g., if a newly introduce command name was
already been defined in the user document then there will be a conflict that is
nearly impossible to avoid 100%.

As mentioned earlier, doc now supports options on several commands and
environments and as a result it is necessary to use braces around the argument for
\DescribeMaro if the “macro to be described” uses private letters such as @ or _
as part of its name. That was always the official syntax but in the past you could
get away with leaving out the braces more often than you can now.

The old doc documentation also claimed that redefinitions of things like
\PrintDescribeMacro could be done before loading the package (and not only
afterwards) and doc would in that case not change those commands. As the setup
mechanisms are now much more powerful and general such an approach is not
really good. So with doc version 3 modifications have to be done after the doc
package got loaded and the last modification will always win.

I’m temped to drop compatibility with LATEX 2.09 (but so far I have left it in).
In the past it was possible to use macros declared with \outer in the argument

of \begin{macro} or \DoNotIndex even though \outer is not a concept supported
in LATEX. This is no longer possible. More exactly, it is no longer possible to
prevent them from being indexed (as \DoNotIndex can’t be used), but you can
pass them to the macro environment as follows:

\begin{macro}[outer]{\foo}

if \foo is a macro declared with \outer. The technical reason for this change is
that in the past various other commands, such as \{ or \} did not work properly
in these arguments when they where passed as “strings” and not as single macro
tokens. But by switching to macro tokens we can’t have \outer macros because
their feature is to be not allowed in arguments. So what happens above when you
use [outer] is that the argument is read as a string with four character tokens so
that it is not recognized as being \outer.

17

5 Old interfaces no longer really needed
Thirty years is a long time in the life of computer programs, so there are a good
number of interfaces within doc that are really only of historical interest (or when
processing equally old sources). We list them here, but in general we suggest that
for new documentation they should not be used.

5.1 makeindex bugs
Versions of makeindex prior to 2.9 had some bugs affecting doc. One of these,\OldMakeindex
pertaining to the % character doesn’t have a work-around appropriate for ver-
sions with and without the bug. If you really still have an old version, invoke
\OldMakeindex in a package file or the driver file to prevent problems with index
entries such as \%, although you’ll probably normally want to turn off indexing of
\% anyway. Try to get an up-to-date makeindex from one of the TEX repositories.

5.2 File transmission issues
In the early days of the Internet file transmission issues have been a serious prob-
lem. There was a famous gateway in Rochester, UK that handled the traffic from
the European continent to the UK and that consisted of two IBM machines run-
ning with different codepages (that had non-reversible differences). As a result
“strange” TEX characters got replaced with something else with the result that
the files became unusable.

To guard against this problem (or rather to detect it if something got broken
in transfer I added code to doc to check a static character table and also to have
a very simple checksum feature (counting backslashes).

These days the \CheckSum is of little value (and a lot of pain for the developer)
and character scrambling doesn’t happen any more so the \CharacterTable is
essentially useless. Thus neither should be used in new developments.

To overcome some of the problems of sending files over the networks we devel-\CharacterTable
\CheckSum oped two macros which should detect corrupted files. If one places the lines

%%\CharacterTable
%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
%% Digits \0\1\2\3\4\5\6\7\8\9
%% Exclamation \! Double quote " Hash (number) \#
%% Dollar \$ Percent \% Ampersand \&
%% Acute accent \’ Left paren \(Right paren \)
%% Asterisk * Plus \+ Comma \,
%% Minus \- Point \. Solidus \/
%% Colon \: Semicolon \; Less than \<
%% Equals \= Greater than \> Question mark \?
%% Commercial at \@ Left bracket \[Backslash \\
%% Right bracket \] Circumflex \^ Underscore _
%% Grave accent \‘ Left brace \{ Vertical bar |
%% Right brace \} Tilde \~}
%%

at the beginning of the file then character translation failures will be detected,
provided of course, that the used doc package has a correct default table. The

18

percent signs14 at the beginning of the lines should be typed in, since only the doc
package should look at this command.

Another problem of mailing files is possible truncation. To detect these sort of
errors we provide a \CheckSum macro. The check-sum of a file is simply the number
of backslashes in the code, i.e. all lines between the macrocode environments. But
don’t be afraid: you don’t have count the code-lines yourself; this is done by the
doc package for you. You simply have add

% \CheckSum{0}

near the beginning of the file and use the \MaybeStop (which starts looking for
backslashes) and the \Finale command. The latter will inform you either that
your file has no check-sum (telling you the right number) or that your number
is incorrect if you put in anything other than zero but guessed wrong (this time
telling you both the correct and the incorrect one). Then you go to the top of
your file again and change the line to the right number, i.e., line

% \CheckSum{⟨number⟩}

and that’s all.
While \CharacterTable and \CheckSum have been important features in the

early days of the public internet when doc was written as the mail gateways back
then were rather unreliable and often mangled files they are these days more a
nuisance than any help. They are therefore now fully optional and no longer
recommended for use with new files.

6 Introduction to previous releases

Original abstract: This
package contains the defi-
nitions that are necessary
to format the documenta-
tion of package files. The
package was developed in
Mainz in cooperation with
the Royal Military College
of Science. This is an up-
date which documents var-
ious changes and new fea-
tures in doc and integrates
the features of newdoc.

The TEX macros which are described
here allow definitions and documenta-
tion to be held in one and the same file.
This has the advantage that normally
very complicated instructions are made

simpler to understand by comments in-
side the definition. In addition to this,
updates are easier and only one source
file needs to be changed. On the other
hand, because of this, the package files
are considerably longer: thus TEX takes
longer to load them. If this is a prob-
lem, there is an easy remedy: one needs
only to run the docstrip.tex program
that removes nearly all lines that begin
with a percent sign.

The idea of integrated documenta-
tion was born with the development of
the TEX program; it was crystallized
in Pascal with the Web system. The
advantages of this method are plain to
see (it’s easy to make comparisons [2]).
Since this development, systems similar

14There are two percent signs in each line. This has the effect that these lines are not removed
by the docstrip.tex program.

19

to Web have been developed for other
programming languages. But for one
of the most complicated programming
languages (TEX) the documentation has
however been neglected. The TEX world
seems to be divided between:—

• a couple of “wizards”, who produce
many lines of completely unread-
able code “off the cuff”, and

• many users who are amazed that
it works just how they want it to
do. Or rather, who despair that
certain macros refuse to do what
is expected of them.

I do not think that the Web sys-
tem is the reference work; on the con-
trary, it is a prototype which suffices
for the development of programs within
the TEX world. It is sufficient, but
not totally sufficient.15 As a result
of Web, new programming perspec-
tives have been demonstrated; unfortu-
nately, though, they haven’t been de-
veloped further for other programming
languages.

The method of documentation of
TEX macros which I have introduced
here should also only be taken as a first
sketch. It is designed explicitly to run
under LATEX alone. Not because I was of
the opinion that this was the best start-
ing point, but because from this starting
point it was the quickest to develop.16
As a result of this design decision, I had
to move away from the concept of mod-
ularization; this was certainly a step
backward.

I would be happy if this article could
spark off discussion over TEX documen-
tation. I can only advise anyone who
thinks that they can cope without docu-
mentation to “Stop Time” until he or she
completely understands the AMS-TEX
source code.

Using the doc package

Just like any other package, invoke it by
requesting it with a \usepackage com-
mand in the preamble. doc’s use of
\reversemarginpars may make it in-
compatible with some classes.

Preface to version 1.7 (from around 1992)

This version of doc.dtx documents
changes which have occurred since the
last published version [5] but which have
been present in distributed versions of
doc.sty for some time. It also inte-
grates the (undocumented) features of
the distributed newdoc.sty.

The following changes and additions
have been made to the user interface
since the published version [5]. See §2
for more details.

Driver mechanism \DocInput is
now used in the driver file to input
possibly multiple independent doc
files and doc no longer has to be

the last package. \IndexListing
is replaced by \IndexInput;

Indexing is controlled by \PageIndex
and \CodelineIndex, one of
which must be specified to pro-
duce an index—there is no longer
a \makeindex in the default
\DocstyleParms;

The macro environment now takes
as argument the macro name with
the backslash;

Verbatim text Newlines are now for-
bidden inside \verb and com-
mands \MakeShortVerb and

15I know that this will be seen differently by a few people, but this product should not be
seen as the finished product, at least as far as applications concerning TEX are concerned. The
long-standing debate over ‘multiple change files’ shows this well.

16This argument is a bad one, however, it is all too often trotted out.

20

\DeleteShortVerb are provided
for verbatim shorthand;

\par can now be used in \DoNotIndex;

Checksum/character table support
for ensuring the integrity of dis-
tributions is added;

\printindex becomes \PrintIndex;

multicol.sty is no longer necessary
to use doc or print the docu-
mentation (although it is recom-
mended);

‘Docstrip’ modules are recognized
and formatted specially.

As well as adding some completely
new stuff, the opportunity has been
taken to add some commentary to the
code formerly in newdoc and that added
after version 1.5k of doc. Since (as
noted in the sections concerned) this
commentary wasn’t written by Frank
Mittelbach but the code was, it is prob-
ably not true in this case that “if the
code and comments disagree both are
probably wrong”!

Bugs

There are some known bugs in this ver-
sion:

• The \DoNotIndex command
doesn’t work for some single char-
acter commands most noticeable
\%.

• The ‘General changes’ glossary en-
try would come out after macro
names with a leading ! and possi-
bly a leading ";

• If you have an old version of make-
index long \changes entries will
come out strangely and you may

find the section header amalga-
mated with the first changes en-
try. Try to get an up-to-date one
(see p. 18);

• Because the accompanying make-
index style files support the in-
consistent attribute specifications
of older and newer versions make-
index always complains about
three ‘unknown specifier’s when
sorting the index and changes en-
tries.

• If \MakeShortVerb and
\DeleteShortVerb are used with
single character arguments, e.g.,
{|} instead of {\|} chaos may
happen.

(Some ‘features’ are documented be-
low.)

Wish list

• Hooks to allow \DescribeMacro
and \DescribeEnv to write out
to a special file information about
the package’s ‘exported’ defini-
tions which they describe. This
could subsequently be included in
the docstripped .sty file in a
suitable form for use by smart
editors in command completion,
spelling checking etc., based on
the packages used in a document.
This would need agreement on a
‘suitable form’.

• Indexing of the modules used in
docstrip’s %< directives. I’m not
sure how to index directives con-
taining module combinations;

• Writing out bibliographic infor-
mation about the package;

• Allow turning off use of the spe-
cial font for, say, the next guarded
block.

21

Acknowledgements
I would like to thank all folks at Mainz and at the Royal Military College of Science
for their help in this project. Especially Brian and Rainer who pushed everything
with their suggestions, bug fixes, etc.

A big thank you to David Love who brought the documentation up-to-date
again, after I neglected this file for more than two years. This was most certainly
a tough job as many features added to doc.dtx after its publication in TUGboat
have been never properly described. Beside this splendid work he kindly provided
additional code (like “docstrip” module formatting) which I think every doc user
will be grateful for.

7 The Description of Macros
Most of the following code is destined for doc.sty after processing with docstrip
to include the module style indicated here. (All code in this file not appropriate
to doc.sty has to be included explicitly by docstrip so that this .dtx file can be
used as directly as a package file rather than the stripped version.) The usual
font change for the conditionally-included lines between the ⟨∗style⟩ and ⟨/style⟩
directives is suppressed since only the lines with an explicit directive are special
in this file.

21 ⟨∗package⟩
Under LATEX2ε the test to avoid reading doc in twice is normally unnecessary. It
was kept to only to stay compatible with LATEX209 styles that \input doc directly.

22 \@ifundefined{macro@cnt}{}{\endinput}

As you can see I used macros like \fileversion to denote the version number\fileversion
\filedate
\docdate

and the date. They are defined at the very beginning of the package file (without
a surrounding macrocode environment), so I don’t have to search for this place
here when I change the version number. You can see their actual outcome in a
footnote to the title.

The first thing that we do next is to get ourselves two alternative comment
signs. Because all sensible signs are already occupied, we will choose some that
can only be entered indirectly:

23 \catcode‘\^^A=14
24 \catcode‘\^^X=14

We repeat this statement at the beginning of the document in case the inputenc
package is used disabling it again.

25 \AtBeginDocument{\catcode‘\^^A=14\relax\catcode‘\^^X=14\relax}

7.1 Keys supported by doc

In the past this used kvoptions but this will be replaced by using l3keys at some
point in the future. Right now this is only a lightweight shift—the code could and
should be altered further.

TODO: cleanup replacement of kvoptions
Some keys are available as options for use in \usepackage some are for the

generated item api’s:

22

26 \DeclareKeys
27 {
28 noprint .if = {doc@noprint},
29 noindex .if = {doc@noindex},
30 hyperref .if = {doc@hyperref},
31 nohyperref .ifnot = {doc@hyperref},
32 multicol .if = {doc@multicol},
33 nomulticol .ifnot = {doc@multicol},
34 debugshow .if = {doc@debugshow},
35 reportchangedates .if = {doc@reportchangedates},
36 toplevel .if = {doc@toplevel},
37 notoplevel .ifnot = {doc@toplevel},
38 macrolike .if = {doc@macrolike},
39 envlike .ifnot = {doc@macrolike},
40 idxtype .store = \doc@idxtype,
41 idxgroup .store = \doc@idxgroup,
42 printtype .store = \doc@printtype,
43 outer .if = {doc@outer},
44 }

Setting these options to true initially.
45 \doc@hyperreftrue
46 \doc@multicoltrue
47 \doc@topleveltrue

7.2 Processing the package keys
48 \ProcessKeyOptions

\ifscan@allowed
\scan@allowedtrue

\scan@allowedfalse

\ifscan@allowed is the switch used to determine if the \active@escape@char
should start the macro scanning mechanism.

49 \newif\ifscan@allowed \scan@allowedtrue

\SetupDoc We need to save the default value for some options because doc elements can
locally set them.

TODO: Use 2e interface for \keys_set:nn when available

50 \def\SetupDoc#1{%
51 \csname keys_set:nn\endcsname{doc}{#1}%
52 \edef\doc@noprintdefault{\ifdoc@noprint true\else false\fi}%
53 \ifdoc@noindex

If we do not index by default then we should also turn off \scan@allowed.
54 \def\doc@noindexdefault{true}%
55 \scan@allowedfalse
56 \else
57 \def\doc@noindexdefault{false}%
58 \fi
59 }

60 \SetupDoc{} % just save the default values

23

7.3 Macros surrounding the ‘definition parts’
macrocode (env.) Parts of the macro definition will be surrounded by the environment macrocode.

Put more precisely, they will be enclosed by a macro whose argument (the text to
be set ‘verbatim’) is terminated by the string %␣␣␣␣\end{macrocode}. Carefully
note the number of spaces. \macrocode is defined completely analogously to
\verbatim, but because a few small changes were carried out, almost all internal
macros have got new names. We start by calling the macro \macro@code, the
macro which bears the brunt of most of the work, such as \catcode reassignments,
etc.

61 \def\macrocode{\macro@code

Then we take care that all spaces have the same width, and that they are not
discarded.

62 \frenchspacing \@vobeyspaces

Before closing, we need to call \xmacro@code. It is this macro that expects an
argument which is terminated by the above string. This way it is possible to keep
the \catcode changes local.

63 \xmacro@code}

\macro@code We will now begin with the macro that does the actual work:
64 \def\macro@code{%

In theory it should consist of a trivlist environment, but the empty space before
and after the environment should not be too large.

65 \topsep \MacrocodeTopsep

The next parameter we set is \@beginparpenalty, in order to prevent a page
break before such an environment.

66 \@beginparpenalty \predisplaypenalty

We then start a \trivlist, set \parskip back to zero and start an empty \item.

67 \if@inlabel\leavevmode\fi
68 \trivlist \parskip \z@ \item[]%

The \item command sets the \@labels box but that box is never typeset (as
\everypar that normally does this gets redefined later). That is normally not
an issue, but produces a problem when typesetting in mixed directions, (e.g., in
Japanese), so we explicitly clear it for that use case.

69 \global\setbox\@labels\box\voidb@x

Additionally, everything should be set in typewriter font. Some people might
prefer it somewhat differently; because of this the font choice is macro-driven.17

70 \macro@font

Because \item sets various parameters, we have found it necessary to alter some
of these retrospectively.

71 \leftskip\@totalleftmargin \advance\leftskip\MacroIndent
72 \rightskip\z@ \parindent\z@ \parfillskip\@flushglue

17The font change has to be placed after the \item. Otherwise a change to \baselineskip
will affect the paragraph above.

24

The next line consists of the LATEX definition of \par used in \verbatim and
should result in blank lines being shown as blank lines.

73 \blank@linefalse \def\par{\ifblank@line
74 \leavevmode\fi
75 \blank@linetrue\@@par
76 \penalty\interlinepenalty}

What use is this definition of \par ? We use the macro \obeylines of [3] which
changes all ^^M to \par so that each can control its own indentation. Next we
must also ensure that all special signs are normalized; that is, they must be given
\catcode 12.

77 \obeylines
78 \@noligs
79 \let\do\@makeother \dospecials

If indexing by code lines is switched on the line number is incremented and set ap-
propriately. We also check whether the start of the next line indicates a docstrip
module directive and process it appropriately if so using \check@module.

80 \global\@newlistfalse
81 \global\@minipagefalse
82 \ifcodeline@index
83 \everypar{\global\advance\c@CodelineNo\@ne
84 \llap{\theCodelineNo\ \hskip\@totalleftmargin}%
85 \check@module}%
86 \else \everypar{\check@module}%
87 \fi

We also initialize the cross-referencing feature by calling \init@crossref. This
will start the scanning mechanism when encountering an escape character.

88 \init@crossref}

\ifblank@line
\blank@linetrue

\blank@linefalse

\ifblank@line is the switch used in the definition above. In the original verbatim
environment the \if@tempswa switch is used. This is dangerous because its value
may change while processing lines in the macrocode environment.

89 \newif\ifblank@line

\endmacrocode Because we have begun a trivlist environment in the macrocode environment,
we must also end it. We must also act on the value of the pm@module flag (see
below) and empty \everypar.

90 \def\endmacrocode{%
91 \ifpm@module \endgroup \pm@modulefalse \fi
92 \everypar{}%
93 \global\@inlabelfalse
94 \endtrivlist

Additionally \close@crossref is used to do anything needed to end the cross-
referencing mechanism.

95 \close@crossref}

\MacroFont Here is the default definition for the \MacroFont macro. With the new math font
handling in NFSS2 it isn’t any longer correct to suppress the math font setup since
this is now handled differently. But to keep the font change fast we use only a
single \selectfont (in \small) and do the rest by hand.

25

96 \@ifundefined{MacroFont}{%
97 \if@compatibility

Despite the above statement we will call \small first if somebody is using a
LATEX2.09 document with doc. I wouldn’t have bothered since doc-sources should
be up-to-date but since the request came from someone called David Carlisle . . . :-)

98 \def\MacroFont{\small
99 \usefont\encodingdefault

100 \ttdefault
101 \mddefault
102 \shapedefault
103 }%
104 \else
105 \def\MacroFont{\fontencoding\encodingdefault
106 \fontfamily\ttdefault
107 \fontseries\mddefault
108 \fontshape\shapedefault
109 \small}%
110 \fi
111 }{}

\AltMacroFont
\macro@font

Although most of the macro code is set in \MacroFont we want to be able to
switch to indicate module code set in \AltMacroFont. \macro@font keeps track
of which one we’re using. We can’t do the same thing sensibly in OFSS as in
NFSS.
112 \@ifundefined{AltMacroFont}{%
113 \if@compatibility

Again have \small first if we are in compat mode.
114 \def\AltMacroFont{\small
115 \usefont\encodingdefault
116 \ttdefault
117 \mddefault
118 \sldefault
119 }%
120 \else
121 \def\AltMacroFont{\fontencoding\encodingdefault
122 \fontfamily\ttdefault
123 \fontseries\mddefault
124 \fontshape\sldefault
125 \small
126 }%
127 \fi
128 }{}

To allow changing the \MacroFont in the preamble we defer defining the internally
used \macro@font until after the preamble.
129 \AtBeginDocument{\let\macro@font\MacroFont}

\check@module
\ifpm@module

This is inserted by \everypar at the start of each macrocode line to check whether
it starts with module information. (Such information is of the form %<⟨switch⟩>,
where the % must be at the start of the line and ⟨switch⟩ comprises names with
various possible separators and a possible leading +, -, * or / [6]. All that concerns

26

us here is what the first character of ⟨switch⟩ is.) First it checks the pm@module flag
in case the previous line had a non-block module directive i.e., not %<* or %</; if it
did we need to close the group it started and unset the flag. \check@module looks
ahead at the next token and then calls \ch@percent to take action depending on
whether or not it’s a %; we don’t want to expand the token at this stage. This is
all done conditionally so it can be turned off if it causes problems with code that
wasn’t designed to be docstripped.
130 \def\check@module{%
131 \ifcheck@modules
132 \ifpm@module \endgroup \pm@modulefalse \fi
133 \expandafter\futurelet\expandafter\next\expandafter\ch@percent
134 \fi}
135 \newif\ifpm@module

\DontCheckModules
\CheckModules

\ifcheck@modules

Here are two driver-file interface macros for turning the module checking on and
off using the check@modules switch.
136 \def\DontCheckModules{\check@modulesfalse}
137 \def\CheckModules{\check@modulestrue}
138 \newif\ifcheck@modules \check@modulestrue

\ch@percent If the lookahead token in \next is %12 we go on to check whether the following
one is < and otherwise do nothing. Note the \expandafter to get past the \fi.
139 \def\ch@percent{%
140 \if \percentchar\next
141 \expandafter\check@angle
142 \fi}

\check@angle Before looking ahead for the < the % is gobbled by the argument here.
143 \def\check@angle#1{\futurelet\next\ch@angle}

\ch@angle If the current lookahead token is < we are defined to be processing a module
directive can go on to look for + etc.; otherwise we must put back the gobbled %.
With LATEX2ε < is active so we have to be a bit careful.
144 \begingroup
145 \catcode‘\<\active
146 \gdef\ch@angle{\ifx<\next
147 \expandafter\ch@plus@etc
148 \else \percentchar \fi}

\ch@plus@etc
\check@plus@etc

We now have to decide what sort of a directive we’re dealing with and do the right
thing with it.
149 \gdef\ch@plus@etc<{\futurelet\next\check@plus@etc}
150 \gdef\check@plus@etc{%
151 \if +\next
152 \let\next\pm@module
153 \else\if -\next
154 \let\next\pm@module
155 \else\if *\next
156 \let\next\star@module
157 \else\if /\next
158 \let\next\slash@module

27

At some point in the past the docstrip program was partly rewritten and at that
time it also got support for a very special directive of the form %<< followed by an
arbitrary string. This is used for “verbatim” inclusion in case of certain problem.
We do not really attempt to pretty print that case but we need at least account
for it since otherwise we get an error message since this is the only case where we
will not have a closing >.
159 \else\ifx <\next
160 \percentchar
161 \else
162 \let\next\pm@module
163 \fi\fi\fi\fi\fi
164 \next}
165 \endgroup

\pm@module If we’re not dealing with a block directive (* or /) i.e., it’s a single special line,
we set everything up to the next > appropriately and then change to the special
macro font inside a group which will be ended at the start of the next line. If
the apparent module directive is missing the terminating > this will lose, but then
so will the docstrip implementation. An alternative strategy would be to have
\pm@module make > active and clear a flag set here to indicate processing the
directive. Appropriate action could then be taken if the flag was found still to be
set when processing the next line.
166 \begingroup
167 \catcode‘\~=\active
168 \lccode‘\~=‘\>
169 \lowercase{\gdef\pm@module#1~}{\pm@moduletrue
170 \Module{#1}\begingroup

We switch to a special font as soon the nesting is higher than the current value
of \c@StandardModuleDepth. We do a local update to the \guard@level here
which will be restored after the current input line.
171 \advance\guard@level\@ne
172 \ifnum\guard@level>\c@StandardModuleDepth\AltMacroFont\fi
173 }

\star@module
\slash@module

If the start or end of a module block is indicated, after setting the guard we have
to check whether a change in the macrocode font should be done. This will be
the case if we are already inside a block or are ending the outermost block. If so,
we globally toggle the font for subsequent macrocode sections between the normal
and special form, switching to the new one immediately.
174 \lowercase{\gdef\star@module#1~}{%
175 \Module{#1}%
176 \global \advance \guard@level\@ne
177 \ifnum \guard@level>\c@StandardModuleDepth
178 \global\let\macro@font=\AltMacroFont \macro@font
179 \fi}
180 \catcode‘\>=\active
181 \gdef\slash@module#1>{%
182 \Module{#1}%
183 \global \advance \guard@level\m@ne
184 \ifnum \guard@level=\c@StandardModuleDepth
185 \global\let\macro@font\MacroFont \macro@font

28

186 \fi
187 }
188 \endgroup

StandardModuleDepth (counter) Counter defining up to which level modules are considered part of the main code.
If, for example, the whole code is surrounded by a %<*package> module we better
set this counter to 1 to avoid getting the whole code be displayed in typewriter
italic.
189 \newcounter{StandardModuleDepth}

\guard@level (counter) We need a counter to keep track of the guard nesting.
190 \newcount \guard@level

\Module This provides a hook to determine the way the module directive is set. It gets as
argument everything between the angle brackets. The default is to set the contents
in sans serif text between ⟨ ⟩ with the special characters suitably \mathcoded by
\mod@math@codes. (You can’t just set it in a sans text font because normally | will
print as an em-dash.) This is done differently depending on whether we have the
NFSS or the old one. In the latter case we can easily change \fam appropriately.
191 \@ifundefined{Module}{%

With NFSS what we probably should do is change to a new \mathversion but I
(Dave Love) haven’t spotted an easy way to do so correctly if the document uses
a version other than normal. (We need to know in what font to set the other
groups.) This uses a new math alphabet rather than version and consequently
has to worry about whether we’re using oldlfnt or not. I expect there’s a better
way. . .
192 \def\Module#1{\mod@math@codes$\langle\mathsf{#1}\rangle$}
193 }{}

\mod@math@codes As well as ‘words’, the module directive text might contain any of the characters
*/+-,&|!() for the current version of docstrip. We only need special action for
two of them in the math code changing required above: | is changed to a \mathop
(it’s normally "026A) and & is also made a \mathop, but in family 0. Remember
that & will not have a special catcode when it’s encountered.
194 \def\mod@math@codes{\mathcode‘\|="226A \mathcode‘\&="2026
195 \mathcode‘\-="702D \mathcode‘\+="702B
196 \mathcode‘\:="703A \mathcode‘\=="703D }

\MacrocodeTopsep (skip)
\MacroIndent (dimen)

In the code above, we have used two registers. Therefore we have to allocate them.
The default values might be overwritten with the help of the \DocstyleParms
macro.
197 \newskip\MacrocodeTopsep \MacrocodeTopsep = 3pt plus 1.2pt minus 1pt
198 \newdimen\MacroIndent
199 \settowidth\MacroIndent{\rmfamily\scriptsize 00\ }

macrocode* (env.)
\endmacrocode*

Just as in the verbatim environment, there is also a ‘star’ variant of the macrocode
environment in which a space is shown by the symbol ␣. Until this moment, I have
not yet used it (it will be used in the description of the definition of \xmacro@code

29

below) but it’s exactly on this one occasion here that you can’t use it (cf. Münch-
hausens Marsh problem)18 directly. Because of this, on this one occasion we’ll
cheat around the problem with an additional comment character. But now back
to \macrocode*. We start with the macro \macro@code which prepares every-
thing and then call the macro \sxmacro@code whose argument is terminated by
the string %␣␣␣␣\end{macrocode*}.
200 \@namedef{macrocode*}{\macro@code\sxmacro@code}

As we know, \sxmacro@code and then \end{macrocode*} (the macro, not the
string), will be executed, so that for a happy ending we still need to define the
macro \endmacrocode*.
201 \expandafter\let\csname endmacrocode*\endcsname = \endmacrocode

\xmacro@code As already mentioned, the macro \xmacro@code expects an argument delimited
by the string %␣␣␣␣\end{macrocode}. At the moment that this macro is called,
the \catcode of TEX’s special characters are 12 (‘other’) or 13 (‘active’). Because
of this we need to utilize a different escape character during the definition. This
happens locally.
202 \begingroup
203 \catcode‘\|=\z@␣\catcode‘\[=\@ne␣\catcode‘\]=\tw@

Additionally, we need to ensure that the symbols in the above string contain the
\catcode s which are available within the macrocode environment.
204 \catcode‘\{=12␣\catcode‘\}=12
205 \catcode‘\%=12␣\catcode‘\␣=\active␣\catcode‘\\=\active

Next follows the actual definition of \macro@code; notice the use of the new
escape character. We manage to get the argument surrounded by the string
\end{macrocode}, but at the end however, in spite of the actual characters used
during the definition of this macro, \end with the argument {macrocode} will be
executed, to ensure a balanced environment.
206 |gdef|xmacro@code#1%␣␣␣␣\end{macrocode}[#1|end[macrocode]]

\sxmacro@code The definition of \sxmacro@code is completely analogous, only here a slightly
different terminating string will be used. Note that the space is not active in this
environment.
207 |catcode‘| =12
208 |gdef|sxmacro@code#1% \end{macrocode*}[#1|end[macrocode*]]

because the \catcode changes have been made local by commencing a new group,
there now follows the matching \endgroup in a rather unusual style of writing.
209 |endgroup

7.4 Macros for the ‘documentation parts’
To put the labels in the left margin we have to use the \reversemarginpar decla-
ration. (This means that the doc.sty can’t be used with all classes or packages.)
We also make the \marginparpush zero and \marginparwidth suitably wide.
210 \reversemarginpar
211 \setlength\marginparpush{0pt} \setlength\marginparwidth{8pc}

18Karl Friedrich Hieronymus Frhr. v. Münchhausen (*1720, †1797). Several books were written
about fantastic adventures supposedly told by him (see [7] or [1]). In one story he escaped from
the marsh by pulling himself out by his hair.

30

212 \setlength\marginparsep{\labelsep}

\bslash We start a new group in which to hide the alteration of \catcode s, and make |
introduce commands, whilst \ becomes an ‘other’ character.

213 {\catcode‘\|=\z@ \catcode‘\\=12

Now we are able to define \bslash (globally) to generate a backslash of \catcode
‘other’. We then close this group, restoring original \catcode s.
214 |gdef|bslash{\}}

verbatim (env.)
verbatim* (env.)

The verbatim environment holds no secrets; it consists of the normal LATEX en-
vironment. We also set the \@beginparpenalty and change to the font given by
\MacroFont.
215 \def\verbatim{\@beginparpenalty \predisplaypenalty \@verbatim
216 \MacroFont \frenchspacing \@vobeyspaces \@xverbatim}

We deal in a similar way with the star form of this environment.
217 \@namedef{verbatim*}{\@beginparpenalty \predisplaypenalty \@verbatim

218 \@setupverbvisiblespace
219 \MacroFont \@vobeyspaces \@sxverbatim}

\@verbatim Additionally we redefine the \@verbatim macro so that it suppresses % characters
at the beginning of the line. The first lines are copied literally from latex.tex.
220 \def\@verbatim{\trivlist \item\relax
221 \if@minipage\else\vskip\parskip\fi
222 \leftskip\@totalleftmargin\rightskip\z@
223 \parindent\z@\parfillskip\@flushglue\parskip\z@
224 \language\l@nohyphenation
225 \@@par
226 \@tempswafalse

\@verbatim sets ^^M, the end of line character, to be equal to \par. This control
sequence is redefined here; \@@par is the paragraph primitive of TEX.
227 \def\par{%
228 \if@tempswa
229 \leavevmode \null \@@par\penalty\interlinepenalty
230 \else
231 \@tempswatrue
232 \ifhmode\@@par\penalty\interlinepenalty\fi
233 \fi

We add a control sequence \check@percent to the definition of \par whose task
it is to check for a percent character.
234 \check@percent}%

The rest is again copied literally from latex.tex (less "").
235 \let\do\@makeother \dospecials
236 \obeylines \verbatim@font \@noligs
237 \everypar \expandafter{\the\everypar \unpenalty}%
238 }

31

\check@percent Finally we define \check@percent. Since this must compare a character with
a percent sign we must first (locally) change percent’s \catcode so that it is
seen by TEX. The definition itself is nearly trivial: grab the following character,
check if it is a %, and insert it again if not. At the end of the verbatim envi-
ronment this macro will peek at the next input line. In that case the argument
to \check@percent might be a \par or a macro with arguments. Therefore we
make the definition \long (\par allowed) and use the normal \next mechanism
to reinsert the argument after the \fi if necessary. There is a subtle problem
here, the equal sign between \next and #1 is actually necessary. Do you see why?
The omission of this token once caused a funny error.
239 {\catcode‘\%=12
240 \long\gdef\check@percent#1{\ifx #1%\let\next\@empty \else
241 \let\next=#1\fi \next}}

In the early versions of the package it also redefined \verb because that didn’t
include the useful test for “newline” in the verbatim text. This is nowadays part
of LATEX so we do not redefine it any longer (the original code is still kept in the
file after \endinput to keep the long history intact).

\macro@cnt (counter) The macro environment is implemented as a trivlist environment, whereby in
order that the macro names can be placed under one another in the margin (cor-
responding to the macro’s nesting depth), the macro \makelabel must be altered.
In order to store the nesting depth, we use a counter. We also need a counter to
count the number of nested macro environments.
242 \newcount\macro@cnt \macro@cnt=0

\MacroTopsep (skip) Here is the default value for the \MacroTopsep parameter used above.
243 \newskip\MacroTopsep \MacroTopsep = 7pt plus 2pt minus 2pt

7.5 Formatting the margin
The following three macros should be user definable. Therefore we define those
macros only if they have not already been defined.

7.6 Creating index entries by scanning ‘macrocode’
The following macros ensure that index entries are created for each occurrence of
a TEX-like command (something starting with ‘\’) providing indexing has been
turned on with \PageIndex or \CodelineIndex. With the default definitions of
\specialMainMacroIndex, etc., the index file generated is intended to be pro-
cessed by Chen’s makeindex program [4].

Of course, in this package file itself we’ve sometimes had to make | take the
rôle of TEX’s escape character to introduce command names at places where \
has to belong to some other category. Therefore, we may also need to recognize
| as the introducer for a command when setting the text inside the macrocode
environment. Other users may have the need to make similar reassignments for
their macros.

\SpecialEscapechar
\active@escape@char

\special@escape@char

The macro \SpecialEscapechar is used to denote a special escape character for
the next macrocode environment. It has one argument—the new escape char-
acter given as a ‘single-letter’ control sequence. Its main purpose is defining

32

\special@escape@char to produce the chosen escape character \catcoded to
12 and \active@escape@char to produce the same character but with \catcode
13.

The macro \special@escape@char is used to print the escape character while
\active@escape@char is needed in the definition of \init@crossref to start the
scanning mechanism.

In the definition of \SpecialEscapechar we need an arbitrary character with
\catcode 13. We use ‘˜’ and ensure that it is active. The \begingroup is used to
make a possible change local to the expansion of \SpecialEscapechar.
244 \begingroup
245 \catcode‘\~\active
246 \gdef\SpecialEscapechar#1{%
247 \begingroup

Now we are ready for the definition of \active@escape@char. It’s a little tricky:
we first define locally the uppercase code of ‘˜’ to be the new escape character.
248 \uccode‘\~‘#1%

Around the definition of \active@escape@char we place an \uppercase com-
mand. Recall that the expansion of \uppercase changes characters according to
their \uccode, but leaves their \catcode s untouched (cf. TEXbook page 41).
249 \uppercase{\gdef\active@escape@char{~}}%

The definition of \special@escape@char is easier, we use \string to \catcode
the argument of \SpecialEscapechar to 12 and suppress the preceding \escapechar.
250 \escapechar\m@ne \xdef\special@escape@char{\string#1}%

Now we close the group and end the definition: the value of \escapechar as well
as the \uccode and \catcode of ‘˜’ will be restored.
251 \endgroup}
252 \endgroup

\init@crossref The replacement text of \init@crossref should fulfill the following tasks:

(1) \catcode all characters used in macro names to 11 (i.e., ‘letter’).

(2) \catcode the ‘\’ character to 13 (i.e., ‘active’).

(3a) \let the ‘\’ equal \scan@macro (i.e., start the macro scanning mechanism)
if there is no special escape character (i.e., the \special@escape@char is
‘\’).

(3b) Otherwise \let it equal \bslash, i.e. produce a printable \.

(4) Make the ⟨special escape character⟩ active.

(5) \let the active version of the special escape character (i.e., the expansion
of \active@escape@char) equal \scan@macro.

The reader might ask why we bother to \catcode the ‘\’ first to 12 (at the end
of \macro@code) then re-\catcode it to 13 in order to produce a \12 in case
(3b) above. This is done because we have to ensure that ‘\’ has \catcode 13
within the macrocode environment. Otherwise the delimiter for the argument of
\xmacro@code would not be found (parameter matching depends on \catcode s).

Therefore we first re-\catcode some characters.
253 \begingroup \catcode‘\|=\z@ \catcode‘\\=\active

33

We carry out tasks (2) and (3b) first.
254 |gdef|init@crossref{|catcode‘|\|active |let\|bslash

Because of the popularity of the ‘@’ character as a ‘letter’ in macros, we normally
have to change its \catcode here, and thus fulfill task (1). But the macro designer
might use other characters as private letters as well, so we use a macro to do the
\catcode switching.
255 |MakePrivateLetters

Now we \catcode the special escape character to 13 and \let it equal \scan@macro,
i.e., fulfill tasks (4) and (5). Note the use of \expandafter to insert the chosen
escape character saved in \special@escape@char and \active@escape@char.
256 |catcode|expandafter‘|special@escape@char|active
257 |expandafter|let|active@escape@char|scan@macro}
258 |endgroup

If there is no special escape character, i.e., if \SpecialEscapechar is \\, the
second last line will overwrite the previous definition of \13. In this way all tasks
are fulfilled.

For happy documenting we give default values to \special@escape@char and
\active@escape@char with the following line:
259 \SpecialEscapechar{\\}

\MakePrivateLetters Here is the default definition of this command, which makes just the @ into a letter.
The user may change it if he/she needs more or other characters masquerading as
letters.
260 \@ifundefined{MakePrivateLetters}
261 {\let\MakePrivateLetters\makeatletter}{}

\close@crossref At the end of a cross-referencing part we prepare ourselves for the next one by
setting the escape character to ‘\’.
262 \def\close@crossref{\SpecialEscapechar\\}

7.7 Macros for scanning macro names
\scan@macro

\macro@namepart
The \init@crossref will have made \active our \special@escape@char, so
that each \active@escape@char will invoke \scan@macro when within the
macrocode environment. By this means, we can automatically add index en-
tries for every TEX-like command which is met whilst setting (in verbatim) the
contents of macrocode environments.
263 \def\scan@macro{%

First we output the character which triggered this macro. Its version \catcoded to
12 is saved in \special@escape@char. We also call \step@checksum to generate
later on a proper check-sum (see section 5.2 for details).
264 \special@escape@char
265 \step@checksum

If the macrocode environment contains, for example, the command \\, the second
\ should not start the scanning mechanism. Therefore we use a switch to decide
if scanning of macro names is allowed.
266 \ifscan@allowed

34

The macro assembles the letters forming a TEX command in \macro@namepart so
this is initially cleared; we then set \next to the first character following the \
and call \macro@switch to determine whether that character is a letter or not.
267 \let\macro@namepart\@empty
268 \def\next{\futurelet\next\macro@switch}%

As you recognize, we actually did something else, because we have to defer the
\futurelet call until after the final \fi. If, on the other hand, the scanning is
disabled we simply \let \next equal ‘empty’.
269 \else \let\next\@empty \fi

Now we invoke \next to carry out what’s needed.
270 \next}

\EnableCrossrefs
\DisableCrossrefs

At this point we might define two macros which allow the user to disable or
enable the cross-referencing mechanism. Processing of files will be faster if only
main index entries are generated (i.e., if \DisableCrossrefs is in force).
271 \def\DisableCrossrefs{\@bsphack\scan@allowedfalse\@esphack}

The macro \EnableCrossrefs will also disable any \DisableCrossrefs command
encountered afterwards.
272 \def\EnableCrossrefs{\@bsphack\scan@allowedtrue
273 \def\DisableCrossrefs{\@bsphack\@esphack}\@esphack}

\macro@switch Now that we have the character which follows the escape character (in \next), we
can determine whether it’s a ‘letter’ (which probably includes @).

If it is, we let \next invoke a macro which assembles the full command name.
274 \def\macro@switch{\ifcat\noexpand\next a%
275 \let\next\macro@name

Otherwise, we have a ‘single-character’ command name. For all those single-
character names, we use \short@macro to process them into suitable index entries.
276 \else \let\next\short@macro \fi

Now that we know what macro to use to process the macro name, we invoke it . . .
277 \next}

\short@macro This macro will be invoked (with a single character as parameter) when a single-
character macro name has been spotted whilst scanning within the macrocode
environment.

First we take a look at the \index@excludelist to see whether this macro
name should produce an index entry. This is done by the \ifnot@excluded macro
which assumes that the macro name is saved in \macro@namepart. The character
mustn’t be stored with a special category code or exclusion from the index won’t
work, so we use \string to normalize it the same way it is done in \DoNotIndex,
i.e. everything ends up catcode 12 except for the space character.
278 \def\short@macro#1{%
279 \edef\macro@namepart{\string#1}%

Any indexing is then delegated to \maybe@index@short@macro. Depending on
the actual character seen, this macro has to do different things, which is why we
keep it separate from \maybe@index@macro to avoid the special tests in the more
common case of a multi-letter macro name.
280 \maybe@index@short@macro\macro@namepart

35

Then we disable the cross-referencing mechanism with \scan@allowedfalse and
print the actual character. The index entry was generated first to ensure that no
page break intervenes (recall that a ^^M will start a new line).
281 \scan@allowedfalse#1%

After typesetting the character we can safely enable the cross-referencing feature
again. Note that this macro won’t be called (since \macro@switch won’t be called)
if cross-referencing is globally disabled.
282 \scan@allowedtrue }

\macro@name We now come to the macro which assembles command names which consist of one
or more ‘letters’ (which might well include @ symbols, or anything else which has
a \catcode of 11).

To do this we add the ‘letter’ to the existing definition of \macro@namepart
(which you will recall was originally set to \@empty).
283 \def\macro@name#1{\edef\macro@namepart{\macro@namepart#1}%

Then we grab hold of the next single character and let \more@macroname determine
whether it belongs to the letter string forming the command name or is a ‘non-
letter’.
284 \futurelet\next\more@macroname}

\more@macroname This causes another call of \macro@name to add in the next character, if it is
indeed a ‘letter’.
285 \def\more@macroname{\ifcat\noexpand\next a%
286 \let\next\macro@name

Otherwise, it finishes off the index entry by invoking \macro@finish.
287 \else \let\next\macro@finish \fi

Here’s where we invoke whatever macro was \let equal to \next.
288 \next}

\macro@finish When we’ve assembled the full ‘letter’-string which forms the command name, we
set the characters forming the entire command name, and generate an appropriate
\index command (provided the command name is not on the list of exclusions).
The ‘\’ is already typeset; therefore we only have to output all ‘letters’ saved in
\macro@namepart.
289 \def\macro@finish{%
290 \macro@namepart

Then we call \ifnot@excluded to decide whether we have to produce an index
entry. The construction with \@tempa is needed because we want the expansion
of \macro@namepart in the \index command.19

291 % \ifnot@excluded
292 % \edef\@tempa{\noexpand\SpecialIndex{\bslash\macro@namepart}}%
293 % \@tempa \fi
294 \maybe@index@macro \macro@namepart
295 }
19The \index command will expand its argument in the \output routine. At this time

\macro@namepart might have a new value.

36

7.8 The index exclude list20

The following part of the code is a new implementation using the LATEX3 program-
ming layer as the constructs and types provided therein are making programming
much easier. Over time I will probably replace the rest of that doc code too.
296 \ExplSyntaxOn

Local sequence that holds names (as strings) of commands that should not\l__doc_donotindex_seq
be indexed. Within a doc element environment that element is placed into the
sequence so that it isn’t unnecessarily index within that part of the code. As the
sequence is local it will revert this setting at the end of the environment so that
the command is indexed elsewhere (unless it is generally disabled from indexing).

Global property list that holds for all commands that are special doc elements\g__doc_idxtype_prop
the type of the element. The key is the command name without backslash and the
value is doc element type identifier, e.g., \texttt{Length} for length registers if
that type has been set up. doc only indexes commands, that is things starting
with an escape character, i.e., a backslash (by default). doc elements that do not
start with an escape character, e.g., environments are not identified when parsing
code so that aren’t indexed automatically inside. Thus for them there is no point
in keeping them in that property list.

Takes a clist of commands (with backslash) as input and exclude all of them\doc_dont_index:n
\DoNotIndex from the index. User facing we make this available as \DoNotIndex.

Displays the current list of the exclude index list in a fairly low-level form.\ShowIndexingState
This command takes two arguments: a command (with escape char) and its\RecordIndexType

type (i.e., first mandatory argument of a \NewDocElement declaration). If #1
should not be included from the index, then the data is used to record that this
command is of this type. The information is then used to generate appropriate
index entries. Obviously, index entries generated earlier will be listing the wrong
type. Therefore this information is also placed into the .aux file so that it will be
available at the beginning of further runs.

This command is internally executed as part of any doc element environment
so it only needs to be explicitly given if for some reason a command with a special
type has no corresponding environment.

\l__doc_donotindex_seq
\g__doc_idxtype_prop

Declarations.
297 \seq_new:N \l__doc_donotindex_seq
298 \prop_new:N \g__doc_idxtype_prop

__doc_trace:x A helper for tracing. . .
299 \cs_new:Npn__doc_trace:x {
300 \legacy_if:nTF{ doc@debugshow }{ \iow_term:x } { \use_none:n }
301 }

\doc_dont_index:n
__doc_dont_index:n

__doc_dont_index_aux:n

Parses the argument a clist of commands with \MakePrivateLetters in force
(so that special characters are recognized as being part of command names)
and puts each command without is backslash as a string into the sequence
\l__doc_donotindex_seq.
302 \cs_new:Npn \doc_dont_index:n {
303 \group_begin:

20Info: the incomplete commentary on \DoNotIndex and the macros it calls was written by
Dave Love.

37

304 \MakePrivateLetters
305 __doc_dont_index:n
306 }

307 \cs_new:Npn __doc_dont_index:n #1 {
308 \group_end:

309 __doc_trace:x{Disable~ indexing~ for~ ’\tl_to_str:n{#1}’ }

Adding the commands to the \l__doc_donotindex_seq sequence is done by map-
ping the function __doc_dont_index_aux:n on each element in the clist.
310 \clist_map_function:nN {#1} __doc_dont_index_aux:n
311 }

We record each command by using its name as a string. This means more tokens
in the sequence but it allows to compare names not “action” which is important
as different commands may have the same meaning (e.g., they may not be defined
at all),
312 \cs_new:Npn __doc_dont_index_aux:n #1 {
313 \seq_put_right:Nx \l__doc_donotindex_seq {\expandafter\@gobble \string#1}
314 }

\DoNotIndex The document-level interface
315 \cs_set_eq:NN \DoNotIndex \doc_dont_index:n

\ShowIndexingState Some tracing information that may be helpful.
316 \def \ShowIndexingState {
317 __doc_trace:x{Show~ doc~ indexing~ state:}
318 \seq_show:N \l__doc_donotindex_seq
319 \prop_show:N \g__doc_idxtype_prop
320 }

__doc_idxtype_put:Nn
\RecordIndexType

TODO: Change name of interface command!

\RecordIndexTypeAux This is the internal form for \RecordIndexType. The first argument is turned into
a string and the rest of the processing is then done by __doc_idxtype_put:nn
321 \cs_new:Npn __doc_idxtype_put:Nn #1#2 {
322 \exp_args:Nx __doc_idxtype_put:nn { \cs_to_str:N #1 }{#2}

We also make an entry in the .aux file so that this declaration becomes im-
mediately available in the next run. However, for this we aren’t reusing
__doc_idxtype_put:N (a.k.a. \RecordIndexType) since that would result in
doubling such lines each time the document is run. Instead we use \RecordIndexTypeAux
which is only updating the data structures without writing to the .aux file.
323 \protected@write\@auxout{}
324 {\string\RecordIndexTypeAux {\string#1 }{#2} }
325 }

When we execute this code from the .aux we better not generate a new line in
the .aux. Otherwise those would cumulate over time.
326 \cs_new:Npn \RecordIndexTypeAux #1#2 {
327 \exp_args:Nx __doc_idxtype_put:nn { \cs_to_str:N #1 }{#2}
328 }

38

Similarly, when the .aux is read at the end of the run we should disable that
command to avoid unnecessary processing.
329 \AtEndDocument{
330 \cs_set_eq:NN \RecordIndexTypeAux \use_none:nn
331 }

Finally, we provide the user-level interface
332 \cs_set_eq:NN \RecordIndexType __doc_idxtype_put:Nn

__doc_idxtype_put_scan:nn When we want to record an index type for a scanned name we can’t turn that into
a csname and then call __doc_idxtype_put:Nn because turning it into a csname
may change the meaning of the name from “undefined” to \relax. Got bitten by
that when processing the kernel sources containing \@undefined within the code:
suddenly that wasn’t undefined any longer. So here is another version that works
only on characters as input. As we don’t know whether or not they are proper
strings already we first make sure that this is the case.
333 \cs_new:Npn __doc_idxtype_put_scan:nn #1#2 {
334 \exp_args:Nf __doc_idxtype_put:nn { \tl_to_str:n {#1} }{#2}

In this case we also have to append a backslash when writing to the .aux file.
335 \protected@write\@auxout{}
336 {\string\RecordIndexTypeAux {\bslash #1 }{#2} }
337 }

__doc_idxtype_put_scan:on And here is the one we really need since the characters are stored in some macro.
338 \cs_generate_variant:Nn __doc_idxtype_put_scan:nn {o}

\record@index@type@save And here is the interface to the rest of the code:
339 \cs_set_eq:NN \record@index@type@save __doc_idxtype_put_scan:on

__doc_idxtype_put:nn This internal command takes two arguments: a command name as string (no
backslash) and its type (i.e., first mandatory argument of a \NewDocElement dec-
laration). If #1 is not in \l__doc_donotindex_seq it will add this data to the
property list \g__doc_idxtype_prop using #1 as key and #2 as its value. If the
key already exist its value will be overwritten. If the command is later marked for
exclusion from the index the property list setting remains unchanged but as long
as no index is produced for the command it will not be consulted.

Note: the command assumes that #1 is already in string form
340 \cs_new:Npn __doc_idxtype_put:nn #1#2 {

No mystery here: if the command is not marked for exclusion from the index add
the property. The extra \tl_to_str:n is a safety measure in case the input wasn’t
already in that form (should only be the case with broken input but . . .)
341 \exp_args:NNf
342 \seq_if_in:NnTF \l__doc_donotindex_seq {\tl_to_str:n{#1}}

Some tracing info . . .
343 {
344 __doc_trace:x{Not~ recording~ index~ type~ for~ ’\bslash #1’ }
345 }
346 {
347 __doc_trace:x{Recording~ index~ type~ for~ ’\bslash #1’ ~ as~ #2 }

39

Stick the data into the property list:
348 \prop_gput:Nnn \g__doc_idxtype_prop {#1}{#2}
349 }
350 }

\exp_args:co A helper: construct a function and call it with its first argument expanded once:
351 \cs_new:Npn \exp_args:co #1#2
352 { \cs:w #1 \exp_after:wN \cs_end:\exp_after:wN {#2} }

\tl_to_str:o Another helper: take some token list variable, expand it and turn it into a string.
353 \cs_generate_variant:Nn \tl_to_str:n {o}

\maybe@index@macro
This takes a macro name (without backslash) as parsed within a macrocode

environment and checks if it should get indexed (i.e., is not on the exclude list) and
if so how (i.e., gets it index type property and makes the right choice depending
on that.

\maybe@index@macro
__doc_maybe_index:o

We first make sure that the argument is really a string (so that we have a defined
situation) and then pass it on to __doc_maybe_index_aux:nN to do the work.
The second argument defines the indexing operation \SpecialIndex for multi-
letter macros and below \SpecialShortIndex for single character macros.
354 \cs_new:Npn __doc_maybe_index:o #1 {
355 \exp_args:Nf __doc_maybe_index_aux:nN { \tl_to_str:o {#1} }
356 \SpecialIndex
357 }

And here is what we call it in the older non-expl3 code:
358 \cs_set_eq:NN \maybe@index@macro __doc_maybe_index:o

\maybe@index@short@macro
__doc_maybe_index_short:o

Single character macros are handled similarly but there the indexing is done by
\SpecialShortIndex and it is simpler because we know that the argument con-
tains a string token not letters.
359 \cs_new:Npn __doc_maybe_index_short:o #1 {
360 \exp_args:No __doc_maybe_index_aux:nN #1
361 \SpecialShortIndex
362 }
363 \cs_set_eq:NN \maybe@index@short@macro __doc_maybe_index_short:o

__doc_maybe_index_aux:nN Take a string (representing a macro without backslash) and make the right choices
with respect to indexing.
364 \cs_new:Npn __doc_maybe_index_aux:nN #1#2 {

A bit of tracing:
365 __doc_trace:x{Searching~ for~ ’\bslash #1’}

If the name is on the exclude list do nothing.
366 \seq_if_in:NnTF \l__doc_donotindex_seq {#1}

367 {
368 __doc_trace:x{Not~ indexing~ ’\bslash #1’ }
369 }

40

Otherwise check if this name has an index type property attached to it.
370 {
371 \prop_get:NnNTF \g__doc_idxtype_prop {#1} \l__doc_idxtype_tl

If so construct and execute \Code⟨idxtype⟩Index21 which is done inside __doc_maybe_index_aux
372 {
373 \exp_args:Ncno __doc_maybe_index_aux:Nnn
374 { Code \tl_use:N \l__doc_idxtype_tl Index }
375 {code} {\bslash #1}
376 }

Otherwise execute \SpecialIndex which is a short form for \CodeMacroIndex{code}
or execute \SpecialShortIndex which deals with some special cases for single let-
ter macros.
377 {
378 __doc_trace:x{Indexing~ ’\bslash #1’\space (\string #2)}
379 \exp_args:No #2 {\bslash #1}
380 }
381 }
382 }

\SpecialShortIndex TODO: to be documented; also needs cleaning up as it is a mix of old and new
right now

383 \cs_new:Npn \SpecialShortIndex #1 {
384 \@SpecialIndexHelper@ #1\@nil
385 \@bsphack
386 \ifdoc@noindex \else
387 \str_case_e:nnF {\@gtempa }
388 {
389 {\cs_to_str:N \^^M } {\def\reserved@a{ \string \space \actualchar }
390 \def\reserved@b { \space }
391 \let\reserved@c \@empty }

With the fix for \␣ we now have to look for a real space to handle that command
sequence.
392 { ~ } {\def\reserved@a{ \string \space \actualchar }
393 \def\reserved@b { \space }
394 \let\reserved@c \@empty }
395 {\c_left_brace_str} { \def\reserved@a{ \bgroup \actualchar }
396 \def\reserved@b { \c_left_brace_str }
397 \def\reserved@c { \noexpand\iffalse
398 \c_right_brace_str
399 \noexpand\fi } }
400 {\c_right_brace_str} { \def\reserved@a{ \egroup \actualchar
401 \noexpand\iffalse
402 \c_left_brace_str
403 \noexpand\fi }
404 \def\reserved@b { \c_right_brace_str }
405 \let\reserved@c \@empty }

The case of \verbatimchar is tricky. We can’t stick it into the normal \verb
because we would then get something like \verb+\++ which would comes out as
“\+” instead of \+. So we use the \verb to only generate the backslash and then

21I guess this should really be an internal name not a user-level one.

41

use \texttt on the \verbatimchar itself. However, that is not enough if we are
unlucky and somebody (like Will :-)) has used something like & with a special
catcode for the \verbatimchar. We therefore also apply \string to it when we
read it back.
406 {\verbatimchar} { \def\reserved@a{ \quotechar\verbatimchar
407 \actualchar }
408 \let\reserved@b \@empty
409 \def\reserved@c
410 { \string\texttt{\string\string\verbatimchar} } }
411 }
412 { \def\reserved@a {\quotechar \@gtempa \actualchar }
413 \def\reserved@b {\quotechar \@gtempa }
414 \let\reserved@c \@empty }
415 \special@index {
416 \reserved@a
417 \string\verb
418 \quotechar *\verbatimchar \quotechar \bslash
419 \reserved@b
420 \verbatimchar
421 \reserved@c
422 \encapchar code}
423 \fi
424 \@esphack
425 }

__doc_maybe_index_aux:Nnn Execute the function passed on as first argument taking argument 2 and 3 as
input.
426 \cs_new:Npn __doc_maybe_index_aux:Nnn #1#2#3 {

We have to be a little careful: as that function name is constructed it may not
actually exist (as constructions generate \relax in TEX in that case). In that case
we raise an error, otherwise we execute (with a little bit of tracing info):
427 \cs_if_exist:NTF #1
428 {
429 __doc_trace:x{Indexing~ ’#3’\space as~
430 \tl_use:N \l__doc_idxtype_tl }
431 #1{#2}{#3}
432 }
433 {
434 \PackageError{doc}{Doc~ element~
435 ’\tl_use:N \l__doc_idxtype_tl’~ unknown}%
436
437 {When~ using~ ’\string\RecordIndexType’~ the~ type~ must~
438 be~ known~\MessageBreak
439 to~ the~ system,~ i.e.,~ declared~ via~
440 ’\string\NewDocElement’\MessageBreak
441 before~ it~ can~ be~ used~ in~ indexing.}
442 }
443 }

Back to old style coding . . .
444 \ExplSyntaxOff

42

7.9 Macros for generating index entries
Here we provide default definitions for the macros invoked to create index entries;
these are either invoked explicitly, or automatically by \scan@macro. As already
mentioned, the definitions given here presuppose that the .idx file will be pro-
cessed by Chen’s makeindex program — they may be redefined for use with the
user’s favorite such program.

To assist the reader in locating items in the index, all such entries are sorted
alphabetically ignoring the initial ‘\’; this is achieved by issuing an \index com-
mand which contains the ‘actual’ operator for makeindex. The default value for the
latter operator is ‘@’, but the latter character is so popular in LATEX package files
that it is necessary to substitute another character. This is indicated to makeindex
by means of an ‘index style file’; the character selected for this function is =, and
therefore this character too must be specially treated when it is met in a TEX
command. A suitable index style file is provided amongst the supporting files for
this style file in gind.ist and is generated from this source by processing with
docstrip to extract the module gind. A similar style file gglo.ist is supplied
for sorting the change information in the glossary file and is extracted as module
gglo. First of all we add some information to the front of the .ist files.
445 ⟨/package⟩
446 ⟨+gind | gglo⟩%% This is a MAKEINDEX style file which should be used to
447 ⟨+gind⟩%% generate the formatted index for use with the doc
448 ⟨+gglo⟩%% generate the formatted change history for use with the doc
449 ⟨+gind | gglo⟩%% package. The TeX commands used below are defined in
450 ⟨+gind | gglo⟩%% doc.sty. The commands for MAKEINDEX like ‘level’
451 ⟨+gind | gglo⟩%% ‘item_x1’ are described in ‘‘ Makeindex, A General
452 ⟨+gind | gglo⟩%% Purpose, Formatter-Independent Index Processor’’ by
453 ⟨+gind | gglo⟩%% Pehong Chen.
454 ⟨+gind | gglo⟩

\actualchar
\quotechar
\levelchar

First come the definitions of \actualchar, \quotechar and \levelchar. Note,
that our defaults are not the ones used by the makeindex program without a style
file.
455 ⟨∗package⟩
456 \@ifundefined{actualchar}{\def\actualchar{=}}{}
457 \@ifundefined{quotechar}{\def\quotechar{!}}{}
458 \@ifundefined{levelchar}{\def\levelchar{>}}{}
459 ⟨/package⟩
460 ⟨+gind | gglo⟩actual ’=’
461 ⟨+gind | gglo⟩quote ’!’
462 ⟨+gind | gglo⟩level ’>’
463 ⟨∗package⟩

\encapchar The makeindex default for the \encapchar isn’t changed.
464 \@ifundefined{encapchar}{\def\encapchar{|}}{}

\verbatimchar We also need a special character to be used as a delimiter for the \verb* command
used in the definitions below.
465 \@ifundefined{verbatimchar}{\def\verbatimchar{+}}{}

43

\@SpecialIndexHelper@ TODO: doc or drop

466 \begingroup
467 \catcode‘\|=0
468 \catcode‘\\=12

469 |gdef|@SpecialIndexHelper@#1#2|@nil{%
470 |if |noexpand#1\%
471 |gdef|@gtempa{#2}%
472 |else
473 |begingroup
474 |escapechar|m@ne
475 |expandafter|gdef|expandafter|@gtempa|expandafter{|string#1#2}%
476 |endgroup
477 |fi}
478 |endgroup

\SortIndex This macro is used to generate the index entries for any single-character command
that \scan@macro encounters. The first parameter specifies the lexical order for
the character, whilst the second gives the actual characters to be printed in the
entry. It can also be used directly to generate index entries which differ in sort
key and actual entry.
479 \def\SortIndex#1#2{%
480 \ifdoc@noindex\else
481 \index{#1\actualchar#2}%
482 \fi
483 }

\LeftBraceIndex
\RightBraceIndex

These two macros fix the problems with makeindex. Note the ‘hack’ with
\iffalse}\fi to satisfy both TEX and the makeindex program. When this is
written to the .idx file TEX will see both braces (so we get a balanced text).
makeindex will also see balanced braces but when the actual index entry is again
processed by TEX the brace in between \iffalse \fi will vanish.
484 \@ifundefined{LeftBraceIndex}{\def\LeftBraceIndex{%
485 \special@index{\bgroup\actualchar
486 \string\verb% % to fool emacs highlighting
487 \quotechar*\verbatimchar
488 \quotechar\bslash{\verbatimchar\string\iffalse}\string\fi}}}{}
489
490 \@ifundefined{RightBraceIndex}{\def\RightBraceIndex{%
491 \special@index{\egroup\actualchar\string\iffalse{\string\fi
492 \string\verb% % to fool emacs highlighting
493 \quotechar*\verbatimchar\quotechar\bslash}\verbatimchar}}}{}

\PercentIndex By default we assume a version of makeindex without the percent bug is being
used.
494 \@ifundefined{PercentIndex}
495 {\def\PercentIndex{\it@is@a\percentchar}}{}

44

\OldMakeindex
\percentchar

Here is one solution for the percent bug in makeindex. The macro \percentchar
denotes a %12. Calling this from a package or the driver file sets things up appro-
priately.
496 \def\OldMakeindex{\def\PercentIndex{%
497 \special@index{\quotechar\percentchar\actualchar
498 \string\verb% % to fool emacs highlighting
499 \quotechar*\verbatimchar\quotechar\bslash
500 \percentchar\percentchar\verbatimchar}}}
501 {\catcode‘\%=12 \gdef\percentchar{%}}

\it@is@a This macro is supposed to produce a correct \SortIndex entry for a given char-
acter. Since this character might be recognized as a ‘command’ character by the
index program used, all characters are quoted with the \quotechar.
502 \def\it@is@a#1{\special@index{\quotechar #1\actualchar
503 \string\verb% % to fool emacs highlighting
504 \quotechar*\verbatimchar
505 \quotechar\bslash\quotechar#1\verbatimchar}}

7.10 Redefining the index environment
\IndexMin (dimen)

IndexColumns (counter)
If multicol is in use, when the index is started we compute the remaining space on
the current page; if it is greater than \IndexMin, the first part of the index will then
be placed in the available space. The number of columns set is controlled by the
counter \c@IndexColumns which can be changed with a \setcounter declaration.
506 \newdimen\IndexMin \IndexMin = 80pt
507 \newcount\c@IndexColumns \c@IndexColumns = 3

theindex (env.) Now we start the multi-column mechanism, if appropriate. We use the LATEX
counter \c@IndexColumns declared above to denote the number of columns and
insert the ‘index prologue’ text (which might contain a \section call, etc.). See
the default definition for an example.
508 \ifdoc@multicol

509 \RequirePackage{multicol}

510 \renewenvironment{theindex}
511 {\begin{multicols}\c@IndexColumns[\index@prologue][\IndexMin]%

Then we make a few last minute assignments to read the individual index \item s
and finish off by ignoring any initial space.
512 \IndexParms \let\item\@idxitem \ignorespaces}%

\endtheindex At the end of the index, we have only to end the multicols environment.
513 {\end{multicols}}

If we can’t use multicols we warn the user and use an environment that’s basically
the one from article.sty.
514 \else
515 \def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi
516 \columnseprule \z@ \columnsep 35\p@
517 \twocolumn[\index@prologue]%
518 \IndexParms \let\item\@idxitem \ignorespaces}
519 \def\endtheindex{\if@restonecol\onecolumn\else\clearpage\fi}
520 \fi

45

Here are the necessary makeindex declarations. We disable scanning of macro
names inside the index with \scan@allowedfalse\n to avoid recursion.
521 ⟨/package⟩
522 ⟨+gind⟩preamble
523 ⟨+gind⟩"\n \\begin{theindex} \n \\makeatletter\\scan@allowedfalse\n"
524 ⟨+gind⟩postamble
525 ⟨+gind⟩"\n\n \\end{theindex}\n"
526 ⟨∗package⟩

\IndexPrologue
\index@prologue

The \IndexPrologue macro is used to place a short message into the document
above the index. It is implemented by redefining \index@prologue, a macro
which holds the default text. We’d better make it a \long macro to allow \par
commands in its argument.
527 \long\def\IndexPrologue#1{\@bsphack\def\index@prologue{#1}\@esphack}

Now we test whether the default is already defined by another package file. If not
we define it.
528 \@ifundefined{index@prologue}
529 {\def\index@prologue{\section*{Index}%
530 \markboth{Index}{Index}%
531 Numbers written in italic refer to the page
532 where the corresponding entry is described;
533 numbers underlined refer to the
534 \ifcodeline@index
535 code line of the
536 \fi
537 definition; numbers in roman refer to the
538 \ifcodeline@index
539 code lines
540 \else
541 pages
542 \fi
543 where the entry is used.
544 }}{}

\IndexParms These are some last-minute assignments for formatting the index entries. They
are defined in a separate macro so that a user can substitute different definitions.
We start by defining the various parameters controlling leading and the separation
between the two columns. The entire index is set in \small size.
545 \@ifundefined{IndexParms}
546 {\def\IndexParms{%
547 \parindent \z@
548 \columnsep 15pt
549 \parskip 0pt plus 1pt
550 \rightskip 15pt
551 \mathsurround \z@
552 \parfillskip=-15pt
553 \small

\@idxitem
\subitem

\subsubitem

Index items are formatted with hanging indentation for any items which may
require more than one line.
554 \def\@idxitem{\par\hangindent 30pt}%

46

Any sub-item in the index is formatted with a 15pt indentation under its main
heading.
555 \def\subitem{\@idxitem\hspace*{15pt}}%

Whilst sub-sub-items go in a further 10pt.
556 \def\subsubitem{\@idxitem\hspace*{25pt}}%

\indexspace The makeindex program generates an \indexspace before each new alphabetic
section commences. After this final definition we end the \@ifundefined and the
definition of \IndexParms.
557 \def\indexspace{\par\vspace{10pt plus 2pt minus 3pt}}%
558 }}{}

\efill This definition of \efill is intended to be used after index items which have no
following text (for example, “ see” entries). It just ensures that the current line is
filled, preventing “Underfull \hbox” messages.
559 \def\efill{\hfill\nopagebreak}%
560 ⟨/package⟩
561 ⟨+gind | gglo⟩item_x1 "\\efill \n \\subitem "
562 ⟨+gglo⟩item_x2 "\\ "
563 ⟨+gind⟩item_x2 "\\efill \n \\subsubitem "
564 ⟨∗package⟩

\pfill The following definitions provide the \pfill command; if this is specified in the
index style file to makeindex as the delimiter to appear after index items, then the
intervening space before the referenced page numbers will be filled with dots, with
a little white space interpolated at each end of the dots. If the line is broken the
dots will show up on both lines.
565 \def\pfill{\unskip~%
566 \leaders\hbox to.6em{\hss .\hss}\hfill
567 \penalty500\strut\nobreak
568 \leaders\hbox to.6em{\hss .\hss}\hfil
569 ~\ignorespaces}%
570 ⟨/package⟩
571 ⟨+gind | gglo⟩delim_0 "\\pfill "
572 ⟨+gind | gglo⟩delim_1 "\\pfill "
573 ⟨+gind | gglo⟩delim_2 "\\pfill "
574 ⟨∗package⟩

* Here is the definition for the * macro. It isn’t used in this set of macros.
575 \def*{\leavevmode\lower.8ex\hbox{$\,\widetilde{\ }\,$}}

\main The defining entry for a macro name is flagged with the string |main22 in the
\index command; makeindex processes this so that the \main macro will be in-
voked to underline the page number(s) on which the definition of the macro will
be found.
576 \@ifundefined{main}{\def\main#1{\underline{#1}}}{}

22With the current definition of \encapchar substituted for |

47

\usage The \usage macro is used to indicate entries describing the usage of a macro. The
corresponding page number(s) will be set in italics.
577 \@ifundefined{usage}{\def\usage#1{\textit{#1}}}{}

\code The \code macro is used to indicate index entries to code lines that aren’t main
entries. By default we do nothing special with them the usage of a macro.
578 \@ifundefined{code}{\def\code#1{#1}}{}

\PrintIndex This is the same as \printindex in the makeidx package.
579 \def\PrintIndex{\@input@{\jobname.ind}%
580 \global\let\PrintIndex\@empty}

We want headings in the index (and changes list) according to the initial char-
acter of the next block of entries and have to instruct makeindex appropriately.
Unfortunately the specification for this changed sometime between versions 2.4
and 2.11 of makeindex. We provide both ways of doing it but unfortunately this
will always produce a warning message from makeindex. This is for older versions:

581 ⟨/package⟩
582 ⟨+gind, gglo⟩% The next lines will produce some warnings when
583 ⟨+gind, gglo⟩% running Makeindex as they try to cover two different
584 ⟨+gind, gglo⟩% versions of the program:
585 ⟨+gind, gglo⟩lethead_prefix "{\\bfseries\\hfil "
586 ⟨+gind, gglo⟩lethead_suffix "\\hfil}\\nopagebreak\n"
587 ⟨+gind⟩lethead_flag 1
588 ⟨+gglo⟩lethead_flag 0

This works for newer ones:
589 ⟨+gind, gglo⟩heading_prefix "{\\bfseries\\hfil "
590 ⟨+gind, gglo⟩heading_suffix "\\hfil}\\nopagebreak\n"
591 ⟨+gind⟩headings_flag 1
592 ⟨+gglo⟩headings_flag 0
593 ⟨∗package⟩

7.11 Dealing with the change history23

To provide a change history log, the \changes command has been introduced.
This takes three arguments, respectively, the version number of the file, the date
of the change, and some detail regarding what change has been made. The second
of these arguments is otherwise ignored, but the others are written out and may be
used to generate a history of changes, to be printed at the end of the document.
However, note that older versions of Chen’s standard makeindex program limit
any textual field to just 64 characters; therefore, is important that the number of
characters in the second and third parameters should not exceed 61 altogether (to
allow for the parentheses placed around the date).

23The whole section was proposed by Brian Hamilton Kelly. He also documented and
debugged the macros as well as many other parts of this package.

48

\changes The output of the \changes command goes into the ⟨Glossary_File⟩ and there-
fore uses the normal \glossaryentry commands.24 Thus makeindex or a similar
program can be used to process the output into a sorted “glossary”. The \changes
command commences by taking the usual measures to hide its spacing, and then
redefines \protect for use within the argument of the generated \indexentry
command.

We re-code nearly all chars found in \sanitize to letter since the use of special
package which make some characters active might upset the \changes command
when writing its entries to the file. However we have to leave % as comment and ␣
as ⟨space⟩ otherwise chaos will happen. And, of course the \ should be available
as escape character.
594 \def\changes{\@bsphack\begingroup\@sanitize
595 \catcode‘\\\z@ \catcode‘\ 10 \MakePercentIgnore
596 \changes@}
597 \def\changes@#1#2#3{%
598 \protected@edef\@tempa{\noexpand\glossary{#1%

If asked for we also show the date of in the change log (after the version).
599 \ifdoc@reportchangedates
600 \space -- #2\fi
601 \levelchar

If the macro \saved@macroname doesn’t contain any macro name (ie is empty)
the current changes entry was done at top-level. In this case we precede it by
\generalname.
602 \ifx\saved@macroname\@empty

Putting a ! at the beginning of the entry hopefully moves this entry to the very
beginning during sorting.
603 \quotechar!%
604 \actualchar
605 \generalname
606 \else

607 \saved@indexname
608 \actualchar
609 \string\verb% % to fool emacs highlighting
610 \quotechar*%
611 \verbatimchar\saved@macroname
612 \verbatimchar
613 \fi
614 :\levelchar #3}}%
615 \@tempa\endgroup\@esphack}

\saved@macroname The entries are sorted for convenience by the name of the most recently introduced
macroname (i.e., that in the most recent \begin{macro} command). We there-
fore provide \saved@macroname to record that argument, and provide a default
definition in case \changes is used outside a macro environment. (This is a wicked
hack to get such entries at the beginning of the sorted list! It works providing no
macro names start with ! or ".)
616 \def\saved@macroname{}
24Note that a recent change in LATEX 2.09 changed the command name in the .glo file from

\indexentry to \glossaryentry. It is therefore necessary to have a special makeindex style file
called gglo.ist to process this file correctly.

49

\saved@indexname The macroname being document without a backslash for the index (or the envi-
ronment name which doesn’t have one in the first place).
617 \def\saved@indexname{}

\generalname This macro holds the string placed before changes entries on top-level.
618 \def\generalname{General}

\RecordChanges To cause the changes to be written (to a .glo) file, we define \RecordChanges to
invoke LATEX’s usual \makeglossary command.
619 \let\RecordChanges\makeglossary

\GlossaryMin (dimen)
GlossaryColumns (counter)

The remaining macros are all analogues of those used for the theindex environ-
ment. When the glossary is started we compute the space which remains at the
bottom of the current page; if this is greater than \GlossaryMin then the first
part of the glossary will be placed in the available space. The number of columns
set are controlled by the counter \c@GlossaryColumns which can be changed with
a \setcounter declaration.
620 \newdimen\GlossaryMin \GlossaryMin = 80pt
621 \newcount\c@GlossaryColumns \c@GlossaryColumns = 2

theglossary (env.) The environment theglossary is defined in the same manner as the theindex
environment.
622 \ifdoc@multicol
623 \newenvironment{theglossary}{%
624 \begin{multicols}\c@GlossaryColumns
625 [\glossary@prologue][\GlossaryMin]%
626 \GlossaryParms \let\item\@idxitem \ignorespaces}%
627 {\end{multicols}}
628 \else
629 \newenvironment{theglossary}{%
630 \@restonecoltrue\if@twocolumn\@restonecolfalse\fi
631 \columnseprule \z@ \columnsep 35\p@
632 \twocolumn[\glossary@prologue]%
633 \GlossaryParms \let\item\@idxitem \ignorespaces}
634 {\if@restonecol\onecolumn\else\clearpage\fi}
635 \fi

Here are the necessary makeindex declarations with scanning disabled as for
the index.
636 ⟨/package⟩
637 ⟨+gglo⟩preamble
638 ⟨+gglo⟩"\n \\begin{theglossary} \n
639 ⟨+gglo⟩ \\makeatletter\\scan@allowedfalse\n"
640 ⟨+gglo⟩postamble
641 ⟨+gglo⟩"\n\n \\end{theglossary}\n"

This difference from gind.ist is necessary if you have an up-to-date LATEX.
642 ⟨+gglo⟩keyword "\\glossaryentry"
643 ⟨∗package⟩

50

\GlossaryPrologue
\glossary@prologue

The \GlossaryPrologue macro is used to place a short message above the glossary
into the document. It is implemented by redefining \glossary@prologue, a macro
which holds the default text. We better make it a long macro to allow \par
commands in its argument.
644 \long\def\GlossaryPrologue#1{\@bsphack
645 \def\glossary@prologue{#1}%
646 \@esphack}

Now we test whether the default is already defined by another package file. If not
we define it.
647 \@ifundefined{glossary@prologue}
648 {\def\glossary@prologue{\section*{{Change History}}%
649 \markboth{{Change History}}{{Change History}}%
650 }}{}

\GlossaryParms Unless the user specifies otherwise, we set the change history using the same
parameters as for the index except that we make it sort of ragged right as it
contains text that often doesn’t break nicely in small columns.
651 \@ifundefined{GlossaryParms}{\let\GlossaryParms\IndexParms
652 \expandafter\def\expandafter\GlossaryParms\expandafter{\GlossaryParms
653 \rightskip 15pt plus 1fil
654 \parfillskip -15pt plus -1fil\relax}
655 }{}

\PrintChanges To read in and print the sorted change history, just put the \PrintChanges com-
mand as the last (commented-out, and thus executed during the documentation
pass through the file) command in your package file. Alternatively, this command
may form one of the arguments of the \MaybeStop command, although a change
history is probably not required if only the description is being printed.

The command assumes that makeindex or some other program has processed
the .glo file to generate a sorted .gls file.
656 \def\PrintChanges{\@input@{\jobname.gls}%
657 \global\let\PrintChanges\@empty}

7.12 Bells and whistles
\MaybeStop

\Finale
\AlsoImplementation

\OnlyDescription

If \AlsoImplementation is in force the whole documentation including the code
part will be typeset. This is the default.
658 \newcommand\AlsoImplementation{%

To make this happen we have to define \MaybeStop in a way that its argument is
typeset at the very end or more exactly at \Finale. For this we save its argument
in the macro \Finale.
659 \long\def\MaybeStop##1{\@bsphack\gdef\Finale{##1%

But \Finale will be called at the very end of a file. This is exactly the point were
we want to know if the file is uncorrupted. Therefore we also call \check@checksum
at this point.
660 \check@checksum}%

51

On the other hand: \MaybeStop is more or less a dividing point between descrip-
tion and code. So we start to look for the check-sum of the documented file by
calling \init@checksum.
661 \init@checksum
662 \@esphack}%
663 }

Since \AlsoImplementation should be the default we execute it and thus
\MaybeStop gets the desired meaning.
664 \AlsoImplementation

When the user places an \OnlyDescription declaration in the driver file the
document should only be typeset up to \MaybeStop. We therefore have to redefine
this macro.
665 \def\OnlyDescription{\@bsphack\long\def\MaybeStop##1{%

In this case the argument of \MaybeStop should be set and afterwards TEX should
stop reading from this file. Therefore we finish this macro with
666 ##1\endinput}\@esphack}

If no \MaybeStop command is given we silently ignore a \Finale issued.
667 \let\Finale\relax

\StopEventually The old wrong name for \MaybeStop. We need to use \def (i.e., expansion) as
\MaybeStop gets redefined once in a while.
668 \def\StopEventually{\MaybeStop}

\meta The \meta macro is a bit tricky. We want to allow line breaks at blanks in the
argument but we don’t want a break in between. In the past this was done by
defining \meta in a way that a ␣ is active when the argument is scanned. Words are
then scanned into \hboxes. The active ␣ will end the preceding \hbox add an ordi-
nary space and open a new \hbox. In this way breaks are only possible at spaces.
The disadvantage of this method was that \meta was neither robust nor could it
be \protected. The new implementation fixes this problem by defining \meta in
a radically different way: we prevent hyphenation by defining a \language which
has no patterns associated with it and use this to typeset the words within the
angle brackets.
669 \ifx\l@nohyphenation\undefined
670 \newlanguage\l@nohyphenation
671 \fi

672 \DeclareRobustCommand\meta[1]{%

Since the old implementation of \meta could be used in math we better ensure
that this is possible with the new one as well. So we use \ensuremath around
\langle and \rangle. However this is not enough: if \meta@font@select below
expands to \itshape it will fail if used in math mode. For this reason we hide
the whole thing inside an \nfss@text box in that case.
673 \ensuremath\langle
674 \ifmmode \expandafter \nfss@text \fi
675 {%
676 \meta@font@select

52

Need to keep track of what we changed just in case the user changes font inside
the argument so we store the font explicitly.
677 \edef\meta@hyphen@restore
678 {\hyphenchar\the\font\the\hyphenchar\font}%
679 \hyphenchar\font\m@ne
680 \language\l@nohyphenation
681 #1\/%
682 \meta@hyphen@restore
683 }\ensuremath\rangle
684 }

\meta@font@select Make font used inside \meta customizable.
685 \def\meta@font@select{\itshape}

\IndexInput This next macro may be used to read in a separate file (possibly a package file that
is not documented by this means) and set it verbatim, whilst scanning for macro
names and indexing the latter. This could be a useful first pass in preparing to
generate documentation for the file read.
686 \def\IndexInput#1{%

We commence by setting up a group, and initializing a \trivlist as is normally
done by a \begin{macrocode} command.
687 \begingroup \macro@code

We also make spacing behave as in the macrocode environment, because otherwise
all the spaces will be shown explicitly.
688 \frenchspacing \@vobeyspaces

Then it only remains to read in the specified file, and finish off the \trivlist.
689 \input{#1}\endmacrocode

Of course, we need to finish off the group as well.
690 \endgroup}

\maketitle The macro to generate titles is easily altered in order that it can be used more than
once (an article with many titles). In the original, diverse macros were concealed
after use with \relax. We must cancel anything that may have been put into
\@thanks, etc., otherwise all titles will carry forward any earlier such setting!
691 \def\maketitle{\par
692 \begingroup \def \thefootnote {\fnsymbol {footnote}}%
693 \setcounter {footnote}\z@
694 \def\@makefnmark{\hbox to\z@{$\m@th^{\@thefnmark}$\hss}}%
695 \long\def\@makefntext##1{\parindent 1em\noindent
696 \hbox to1.8em{\hss$\m@th^{\@thefnmark}$}##1}%
697 \if@twocolumn \twocolumn [\@maketitle]%
698 \else \newpage \global \@topnum \z@ \@maketitle \fi

For special formatting requirements (such as in TUGboat), we use pagestyle
titlepage for this; this is later defined to be plain, unless already defined, as,
for example, by ltugboat.sty.
699 \thispagestyle{titlepage}\@thanks \endgroup

53

If the driver file documents many files, we don’t want parts of a title of one to
propagate to the next, so we have to cancel these:
700 \setcounter {footnote}\z@
701 \gdef\@date{\today}\gdef\@thanks{}%
702 \gdef\@author{}\gdef\@title{}}

\ps@titlepage When a number of articles are concatenated into a journal, for example, it is not
usual for the title pages of such documents to be formatted differently. Therefore,
a class such as ltugboat can define this macro in advance. However, if no such
definition exists, we use pagestyle plain for title pages.
703 \@ifundefined{ps@titlepage}
704 {\let\ps@titlepage=\ps@plain}{}

\MakeShortVerb This arranges an abbreviation for \verb such that if you say \MakeShortVerb{\⟨c⟩}
subsequently using ⟨c⟩⟨text⟩⟨c⟩ is equivalent to \verb⟨c⟩⟨text⟩⟨c⟩.25 In addition,
the fact that ⟨c⟩ is made active is recorded for the benefit of the verbatim and
macrocode environments. Note particularly that the definitions below are global.
The first thing we do (it needn’t be first) is to record the—presumably new—
special character in \dospecials and \@sanitize using \add@special.

Some unwary user might issue \MakeShortVerb for a second time, we better
protect against this. We assume that this happened if a control sequence \cc\⟨c⟩
is bound, the probability that this name is used by another module is low. We
will output a warning below, so that a possible error might be noticed by the
programmer if he reads the LOG file. (Should have used module internal names,
’though.)

\MakeShortVerb* This arranges an abbreviation for \verb* such that if you say \MakeShortVerb*{\⟨c⟩}
subsequently using ⟨c⟩⟨text⟩⟨c⟩ is equivalent to \verb*⟨c⟩⟨text⟩⟨c⟩.
705 ⟨/package⟩
706 ⟨∗package | shortvrb⟩
707 \def\MakeShortVerb{%
708 \@ifstar
709 {\def\@shortvrbdef{\verb*}\@MakeShortVerb}%
710 {\def\@shortvrbdef{\verb}\@MakeShortVerb}}

\@MakeShortVerb

711 \def\@MakeShortVerb#1{%
712 \expandafter\ifx\csname cc\string#1\endcsname\relax

713 \@shortvrbinfo{Made }{#1}\@shortvrbdef
714 \add@special{#1}%

Then the character’s current catcode is stored in \cc\⟨c⟩.
715 \expandafter
716 \xdef\csname cc\string#1\endcsname{\the\catcode‘#1}%

The character is spliced into the definition using the same trick as used in \verb
(for instance), having activated ~ in a group.
717 \begingroup
718 \catcode‘\~\active \lccode‘\~‘#1%
719 \lowercase{%
25Warning: the commentary in the rest of this section was written by Dave Love.

54

The character’s old meaning is recorded in \ac\⟨c⟩ prior to assigning it a new one.
720 \global\expandafter\let
721 \csname ac\string#1\endcsname~%
722 \expandafter\gdef\expandafter~\expandafter{\@shortvrbdef~}}%
723 \endgroup

Finally the character is made active.
724 \global\catcode‘#1\active

If we suspect that ⟨c⟩ is already a short reference, we tell the user. Now he or she
is responsible if anything goes wrong . . .
725 \else

726 \@shortvrbinfo\@empty{#1 already}%
727 {\@empty\verb% % to fool emacs highlighting
728 (*)}%
729 \fi}

\DeleteShortVerb Here’s the means of undoing a \MakeShortVerb, for instance in a region where
you need to use the character outside a verbatim environment. It arranges for
\dospecials and \@sanitize to be altered appropriately, restores the saved cat-
code and, if necessary, the character’s meaning (as stored by \MakeShortVerb).
If the catcode wasn’t stored in \cc\⟨c⟩ (by \MakeShortVerb) the command is
silently ignored.
730 \def\DeleteShortVerb#1{%
731 \expandafter\ifx\csname cc\string#1\endcsname\relax

732 \@shortvrbinfo\@empty{#1 not}%
733 {\@empty\verb% % to fool emacs highlighting
734 (*)}%
735 \else

736 \@shortvrbinfo{Deleted }{#1 as}%
737 {\@empty\verb% % to fool emacs
738 % highlighting
739 (*)}%
740 \rem@special{#1}%
741 \global\catcode‘#1\csname cc\string#1\endcsname

We must not forget to reset \cc\⟨c⟩, otherwise the check in \MakeShortVerb for
a repeated definition will not work.
742 \global \expandafter\let \csname cc\string#1\endcsname \relax
743 \ifnum\catcode‘#1=\active
744 \begingroup
745 \catcode‘\~\active \lccode‘\~‘#1%
746 \lowercase{%
747 \global\expandafter\let\expandafter~%
748 \csname ac\string#1\endcsname}%
749 \endgroup \fi \fi}

\@shortvrbinfo Helper function for info messages.
750 \def\@shortvrbinfo#1#2#3{%
751 ⟨shortvrb⟩ \PackageInfo{shortvrb}{%
752 ⟨!shortvrb⟩ \PackageInfo{doc}{%
753 #1\expandafter\@gobble\string#2 a short reference
754 for \expandafter\string#3}}

55

\add@special This helper macro adds its argument to the \dospecials macro which is con-
ventionally used by verbatim macros to alter the catcodes of the currently active
characters. We need to add \do\⟨c⟩ to the expansion of \dospecials after re-
moving the character if it was already there to avoid multiple copies building up
should \MakeShortVerb not be balanced by \DeleteShortVerb (in case anything
that uses \dospecials cares about repetitions).
755 \def\add@special#1{%
756 \rem@special{#1}%
757 \expandafter\gdef\expandafter\dospecials\expandafter
758 {\dospecials \do #1}%

Similarly we have to add \@makeother\⟨c⟩ to \@sanitize (which is used in things
like \index to re-catcode all special characters except braces).
759 \expandafter\gdef\expandafter\@sanitize\expandafter
760 {\@sanitize \@makeother #1}}

\rem@special The inverse of \add@special is slightly trickier. \do is re-defined to expand to
nothing if its argument is the character of interest, otherwise to expand simply to
the argument. We can then re-define \dospecials to be the expansion of itself.
The space after =‘##1 prevents an expansion to \relax!
761 \def\rem@special#1{%
762 \def\do##1{%
763 \ifnum‘#1=‘##1 \else \noexpand\do\noexpand##1\fi}%
764 \xdef\dospecials{\dospecials}%

Fixing \@sanitize is the same except that we need to re-define \@makeother
which obviously needs to be done in a group.
765 \begingroup
766 \def\@makeother##1{%
767 \ifnum‘#1=‘##1 \else \noexpand\@makeother\noexpand##1\fi}%
768 \xdef\@sanitize{\@sanitize}%
769 \endgroup}
770 ⟨/package | shortvrb⟩
771 ⟨∗package⟩

7.13 Providing a checksum and character table26

\init@checksum The checksum mechanism works by counting backslashes in the macrocode. This
initializes the count (when called from \MaybeStop).
772 \def\init@checksum{\relax
773 \global\bslash@cnt\z@}

\check@checksum This reports the sum compared with the value (\bslash@cnt) the file advertises.
It’s called from \Finale (if that hasn’t been re-defined).
774 \def\check@checksum{\relax
775 \ifnum\check@sum>\m@ne

We do nothing if the checksum in the file is negative (or not given as it is initialized
with -1).
776 \ifnum\check@sum=\z@
777 \typeout{**********************************}%

26Warning: the commentary in this section was written by Dave Love.

56

778 \typeout{* This macro file has no checksum!}%
779 \typeout{* The checksum should be \the\bslash@cnt!}%
780 \typeout{**********************************}%
781 \else
782 \ifnum\check@sum=\bslash@cnt
783 \typeout{*******************}%
784 \typeout{* Checksum passed *}%
785 \typeout{*******************}%
786 \else
787 \PackageError{doc}{Checksum not passed
788 (\the\check@sum<>\the\bslash@cnt)}%
789 {The file currently documented seems to be wrong.^^J%
790 Try to get a correct version.}%
791 \fi
792 \fi
793 \fi
794 \global\check@sum\m@ne}

\check@sum (counter)
\bslash@cnt (counter)

We need to define counters, \bslash@cnt for the number of backslashes counted
and \check@sum for the value advertised by the file if any. A negative value means
there is no checksum checking which is the default.
795 \newcount\check@sum \check@sum = \m@ne
796 \newcount\bslash@cnt \bslash@cnt = \z@

\CheckSum This is the interface to setting \check@sum.
797 \def\CheckSum#1{\@bsphack\global\check@sum#1\relax\@esphack}

\step@checksum This advances the count when a backslash is encountered in the macrocode.
798 \def\step@checksum{\global\advance\bslash@cnt\@ne}

\CharacterTable The user interface to the character table-checking does some \catcodeing and
then compares the following table with the stored version. We need to have @
of type “other” within the table since this is the way it is usually returned when
reading in a normal document. To nevertheless have a private letter we use ~
for this purpose. ~ does no harm as a “letter” as it comes last in the table and
therefore will not gobble following space.
799 \def\CharacterTable{\begingroup \CharTableChanges \character@table}

\character@table This does the work of comparing the tables and reporting the result. Note that
the following code is enclosed in a group with ~ catcoded to letter.
800 \begingroup
801 \catcode‘\~=11
802 \gdef\character@table#1{\def\used~table{#1}%
803 \ifx\used~table\default~table
804 \typeout{***************************}%
805 \typeout{* Character table correct *}%
806 \typeout{***************************}%
807 \else
808 \PackageError{doc}{Character table corrupted}
809 {\the\wrong@table}

57

810 \show\default~table
811 \show\used~table
812 \fi
813 \endgroup}

\CharTableChanges When the character table is read in we need to scan it with a fixed set of \catcodes.
The reference table below was defined by assuming the normal \catcodes of TEX,
i.e. @ is of type other and the only token of type “letter” are the usual letters of
the alphabet. If, for some reason, other characters are made “letters” then their
\catcodes need to be restored before checking the table. Otherwise spaces in the
table are gobbled and we get the information that the tables are different, even
if they are actually equal. For this reason \CharTableChanges can be set up to
locally restore the \catcodes of such “letters” to “other”.
814 \global\let\CharTableChanges\@empty

\default~table Here’s what the table should look like (modulo spaces).
815 \makeatother
816 \gdef\default~table
817 {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
818 Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
819 Digits \0\1\2\3\4\5\6\7\8\9
820 Exclamation \! Double quote \" Hash (number) \#
821 Dollar \$ Percent \% Ampersand \&
822 Acute accent \’ Left paren \(Right paren \)
823 Asterisk * Plus \+ Comma \,
824 Minus \- Point \. Solidus \/
825 Colon \: Semicolon \; Less than \<
826 Equals \= Greater than \> Question mark \?
827 Commercial at \@ Left bracket \[Backslash \\
828 Right bracket \] Circumflex \^ Underscore _
829 Grave accent \‘ Left brace \{ Vertical bar \|
830 Right brace \} Tilde \~}
831 \endgroup

\wrong@table We need a help message in case of problems.
832 \newhelp\wrong@table{Some of the ASCII characters are corrupted.^^J
833 I now \string\show\space you both tables for comparison.}

7.14 Attaching line numbers to code lines27

The code in this section allows index entries to refer to code line numbers—the
number of the first line of macrocode in the macro environment.

\codeline@index Indexing by code line is controlled by the codeline@index switch.

\CodelineNumbered

834 \newif\ifcodeline@index \codeline@indexfalse
835 \let\CodelineNumbered\codeline@indextrue
27Warning: the commentary was written by Dave Love.

58

\codeline@wrindex The code index entries are written out by \special@index. If indexing is by code
line this is \let to \codeline@wrindex; if indexing is by page it is just \index.
However, if \nofiles is given, we omit writing such an index entry at all.
836 \def\codeline@wrindex#1{\if@filesw
837 \begingroup
838 \set@display@protect
839 \immediate\write\@indexfile
840 {\string\indexentry{#1}%
841 {\number\c@CodelineNo}}%
842 \endgroup
843 \fi}

\special@index By default no index entries are written out.
844 \let\special@index = \@gobble

\CodelineIndex This switches on use of the index file with \makeindex, sets the switch to indicate
code line numbering and defines \special@index appropriately.
845 \def\CodelineIndex{\makeindex
846 \codeline@indextrue
847 \let\special@index\codeline@wrindex}

\PageIndex \PageIndex is similar.
848 \def\PageIndex{\makeindex
849 \codeline@indexfalse
850 \let\special@index\index}

CodelineNo (counter) We need a counter to keep track of the line number.
851 \newcount\c@CodelineNo \c@CodelineNo\z@

\theCodelineNo This provides a hook to control the format of line numbers which may be defined
in a class file.
852 \@ifundefined{theCodelineNo}
853 {\ifx\selectfont\undefined
854 \def\theCodelineNo{\rmfamily\scriptsize\arabic{CodelineNo}}%
855 \else
856 \def\theCodelineNo{\reset@font\scriptsize\arabic{CodelineNo}}%
857 \fi}
858 {}

7.15 Layout Parameters for documenting package files
\tolerance People documenting package files would probably rather have things “sticking out”

in overfull \hboxes and poorish spacing, because they probably don’t want to
spend a lot of time on making all the line breaks perfect!
859 \tolerance=1000\relax

The following \mathcode definitions allow the characters ‘\’ and ‘@’ to appear
in \ttfamily font when invoked in math mode;28 particularly for something like

28You may wonder why the definitions state that both characters belong to the variable family
(i.e. the number 7 in front). The reason is this: Originally the \mathcode of \ was defined to
be "075C, i.e. ordinary character number 92 (hex 5C) in math family number 7 which is the
typewriter family in standard LATEX. But this file should not depend on this specific setting, so I
changed these \mathcode s to work with any family assignments. For an example see the article
about the new font selection scheme.

59

\@abc=1.
If an old version of the german package is in force, then the ‘"’ character is

active and would upset the definition of the ⟨16-bit number⟩ quantities below,
therefore we change the \catcode of " inside a group, and use \global.
860 { \catcode‘\"=12
861 \global\mathcode‘\\="705C \global\mathcode‘\@="7040 }

\DocstyleParms This macro can be used, for example, to assign new values to \MacrocodeTopsep
and \MacroIndent and some other internal registers. If it is already defined, the
default definition won’t be carried out. Note that it is necessary to assign new
values via this macro if it should be done in a class file (like ltugboat.cls for
example) since the registers are undefined before doc.sty is read in. The default
values for the internal registers are scattered over this file.
862 \@ifundefined{DocstyleParms}{}{\DocstyleParms}

Clear out \DocstyleParms after use (or non-use).
863 \let\DocstyleParms\relax

\AmSTeX
\BibTeX
\SliTeX

Here are a few definitions which can usefully be employed when documenting
package files: now we can readily refer to AMS-TEX, BibTEX and SLiTEX, as well
as the usual TEX and LATEX.
864 \@ifundefined{AmSTeX}
865 {\def\AmSTeX{\leavevmode\hbox{$\mathcal A\kern-.2em\lower.376ex%
866 \hbox{$\mathcal M$}\kern-.2em\mathcal S$-\TeX}}}{}
867 \@ifundefined{BibTeX}
868 {\def\BibTeX{{\rmfamily B\kern-.05em%
869 \textsc{i\kern-.025em b}\kern-.08em%
870 T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}}{}
871 \@ifundefined{SliTeX}
872 {\def\SliTeX{{\rmfamily S\kern-.06emL\kern-.18em\raise.32ex\hbox
873 {\scshape i}\kern -.03em\TeX}}}{}

\PlainTeX
\Web

There’s even a Plain TEX and a Web.
874 \@ifundefined{PlainTeX}{\def\PlainTeX{\textsc{Plain}\kern2pt\TeX}}{}
875 \@ifundefined{Web}{\def\Web{\textsc{Web}}}{}

7.16 Changing the \catcode of %
\MakePercentIgnore

\MakePercentComment
And finally the most important bit: we change the \catcode of ‘%’ so that it is
ignored (which is how we are able to produce this document!). We provide two
commands to do the actual switching.
876 \def\MakePercentIgnore{\catcode‘\%9\relax}
877 \def\MakePercentComment{\catcode‘\%14\relax}

\DocInput The two macros above are now used to define the \DocInput macro which
was introduced in version v1.5l (or so) of the doc package. In older versions
\MakePercentIgnore was placed at the very end of doc.sty.
878 \def\DocInput#1{\MakePercentIgnore\input{#1}\MakePercentComment}

60

7.17 GetFileInfo
\GetFileInfo Define \filedate and friends from info in the \ProvidesPackage etc. commands.

879 \def\GetFileInfo#1{%
880 \def\filename{#1}%
881 \def\@tempb##1 ##2 ##3\relax##4\relax{%
882 \def\filedate{##1}%
883 \def\fileversion{##2}%
884 \def\fileinfo{##3}}%
885 \edef\@tempa{\csname ver@#1\endcsname}%
886 \expandafter\@tempb\@tempa\relax? ? \relax\relax}

8 Integrating hypdoc
If the option hyperref is selected (which is the default), then we load the hypdoc
package. We do that as late as possible so that we don’t generate option clashes if
it is also loaded in the preamble. That package currently changes more commands
than it should (not knowing about their new definitions defined below) so we have
to save and restore a few.

Midterm all this code in hypdoc should be directly included in doc. For now,
while they are separate we have to do this juggling.
887 \AddToHook{begindocument/before}[doc/hyperref]{%
888 \ifdoc@hyperref

Annoying to code around issue #22
889 \expandafter\let\expandafter\doc@eoph@@k\csname doc.sty-h@@k\endcsname

We require the package without any option so if it was already loaded there is no
option clash.
890 \RequirePackage{hypdoc}
891 \expandafter\let\csname doc.sty-h@@k\endcsname\doc@eoph@@k

The package adds new definitions for \special@index into \CodelineIndex and
\PageIndex but since we might be loading it very late we are already past them
(in the preamble). So we test the final state and do it here, if necessary.
892 \ifx\special@index\@gobble % do we write index entries at all?
893 \else
894 \ifcodeline@index
895 \let\special@index\HD@codeline@wrindex
896 \else
897 \let\special@index\HD@page@wrindex
898 \fi
899 \fi

The amsmath documentation uses \env in headings and with hyperref enabled this
causes trouble in bookmarks.

TODO: fix elsewhere eventually

900 \AddToHook{class/amsdtx/after}{%
901 \pdfstringdefDisableCommands{\let\env\@empty }}%

That package also adds extra code into \index entries but it doesn’t know about
all the stuff that doc does (now). So we need to provide us with two helpers that
handle the \encapchar case in some entries.

61

902 \def\doc@providetarget{\HD@target}%
903 \def\doc@handleencap#1{\encapchar hdclindex{\the\c@HD@hypercount}{#1}}%

If that package is not loaded these helpers do little to nothing.
904 \else
905 \let\doc@providetarget\@empty
906 \def\doc@handleencap#1{\encapchar #1}%

We define the next commands just in case the user changed the option hyperref
from true to false without removing the auxiliary files.
907 \def\hdclindex#1#2{\ifx\@nil#2\@nil\else\csname #2\expandafter\endcsname\fi}%
908 \def\hdpindex #1{\ifx\@nil#1\@nil\else\csname #1\expandafter\endcsname\fi}%
909 \fi
910 }

9 Integrating the DoX package code
The code in this section is largely taken over from the DoX package by Didier with
only minor modifications (so far). This means it is a bit back and forth and both
the code and the documentation need further updates.

9.1 DoX environments
\@doc@env

\@doc@env@
TODO: original doc – fix

{⟨are-we-macrolike⟩}{⟨item⟩}{⟨indextype⟩}{⟨name⟩}
In doc.sty, the macro and environment environments go through the \m@cro@
macro which implements specific parts by testing a boolean condition as its first
argument. This mechanism is not extensible, so I have to hack away a more generic
version that would work for any new dox item, only which looks pretty much like
the original one (with the addition of options management).

First step is to see if we have a comma-separated list of names in #3 and if so
we call the macro doing the work individually for each
911 \ExplSyntaxOn

912 \long\def\@doc@env#1#2#3{

The \endgroup here closes the scanning of names (using special catcodes).
913 \endgroup
914 \clist_map_inline:nn {#3} { \@doc@env@{#1}{#2}{##1} }
915 }
916
917 \ExplSyntaxOff

And here is the payload for each name from the given list:
918 \long\def\@doc@env@#1#2#3{%
919 \topsep\MacroTopsep
920 \trivlist
921 \edef\saved@macroname{\string#3}%

Since version 2.1g, doc creates a \saved@indexname command which in used by
\changes. We now support that as well. The expansion of this command de-
pends on whether the documented item is macrolike or not, which we don’t know
here (it’s only known by \NewDocElement). That’s why we need one specific com-
mand generating \saved@indexname the right way for every single item. These

62

commands are named\@Save⟨item ⟩IndexName; they are technically part of the
generated API, only not meant for public use.

TODO: above docu is no longer right (but code probably needs further changes
anyway)

#1 is either TT (for true = macrolike) or TF. If true then we drop the first char
from \saved@macroname and store the result in \saved@indexname and use the
latter for sorting in the index.
922 \if #1%
923 \edef\saved@indexname{\expandafter\@gobble\saved@macroname}%
924 %

If the doc element described is macrolike but not a normal “macro” then its type
should be recorded and this is the places where this happens. For macros (which
should make up the bulk of these items) we don’t do this and for anything else
that looks from an indexing perspective like a macro we don’t do that either to
keep the list of exceptions small. That would be the case if the indexing command
\Code⟨doc-element⟩Index is equivalent to \CodeMacroIndex.
925 \expandafter\ifx
926 \csname Code#2Index\endcsname
927 \CodeMacroIndex
928 \else
929 \record@index@type@save
930 {\saved@indexname}{#2}%
931 \fi
932 \else
933 \let\saved@indexname\saved@macroname
934 \fi
935 %
936 \def\makelabel##1{\llap{##1}}%
937 \if@inlabel
938 \let\@tempa\@empty
939 \count@\macro@cnt
940 \loop\ifnum\count@>\z@
941 \edef\@tempa{\@tempa\hbox{\strut}}\advance\count@\m@ne
942 \repeat
943 \edef\makelabel##1{\llap{\vtop to\baselineskip{\@tempa\hbox{##1}\vss}}}%
944 \advance\macro@cnt\@ne
945 \else
946 \macro@cnt\@ne
947 \fi
948 \ifdoc@noprint
949 \item
950 \else
951 \edef\@tempa{%
952 \noexpand\item[%

The second notable modification to the original macro involves dynamically con-
structing the name of the print macro:
953 \noexpand\doc@providetarget
954 \noexpand\strut
955 \noexpand\@nameuse{Print#2Name}{\saved@macroname}]}%
956 \@tempa
957 \fi
958 \ifdoc@noindex\else

63

959 \global\advance\c@CodelineNo\@ne

and the third one involves dynamically constructing the name of the index macro:
960 \csname SpecialMain#2Index\expandafter\endcsname
961 \expandafter{\saved@macroname}\nobreak
962 \global\advance\c@CodelineNo\m@ne
963 \fi

Suppress further \index entries when we are within a macrolike environment.
There is no point doing that for non-macrolike environments are index entries
are only generated for items starting with a backslash anyway.

TODO: fix

964 \if#1\expandafter\DoNotIndex \expandafter {\saved@macroname}\fi
965 \ignorespaces}

\doc@env {⟨true-value⟩}{⟨item⟩}[⟨options⟩]
Handle optional arguments and call \@doc@env. Because environments can be
nested, we can’t rely on grouping for getting options default values. Hence, we
need to reset the options at every call.

TODO: Use 2e interface for \keys_set:nn when available

966 \def\doc@env#1#2[#3]{%
967 \@nameuse{doc@noprint\doc@noprintdefault}%
968 \@nameuse{doc@noindex\doc@noindexdefault}%
969 \csname keys_set:nn\endcsname{doc}{#3}%
970 \begingroup
971 \ifdoc@outer
972 \catcode‘\\12
973 \fi
974 \MakePrivateLetters
975 \@doc@env{#1}{#2}%
976 }

9.2 doc descriptions
\@doc@describe {⟨item⟩}{⟨name⟩}

977 \def\@doc@describe#1#2{%
978 \ifdoc@noprint\else
979 \marginpar{\raggedleft

The hyperref target has to be in horizontal mode (which is the case if it is after
the \strut).
980 \strut
981 \doc@providetarget
982 \@nameuse{PrintDescribe#1}{#2}}%
983 \fi
984 \ifdoc@noindex\else
985 \@nameuse{Special#1Index}{#2}%
986 \fi
987 \@esphack
988 \endgroup
989 \ignorespaces}

64

\doc@describe {⟨item⟩}[⟨options⟩]
Handle optional arguments and call \@doc@describe.

TODO: Use 2e interface for \keys_set:nn when available
990 \def\doc@describe#1[#2]{%
991 \leavevmode\@bsphack
992 \csname keys_set:nn\endcsname{doc}{#2}%
993 \@doc@describe{#1}}

9.3 API construction
\@temptokenb A scratch register (which may have been defined elsewhere)

994 \@ifundefined{temptokenb}{\newtoks\@temptokenb}{}

\doc@createspecialmainindex {⟨item⟩}{⟨idxtype⟩}{⟨idxcat⟩}

\doc@createspecialmainmacrolikeindex {⟨item⟩}{⟨idxtype⟩}{⟨idxcat⟩}

TODO: original doc – fix
The “macrolike” version does something similar to doc’s \SpecialIndex@

macro, but simplified. Let’s just hope nobody will ever define \␣ or nonletter
macros as macrolike doc elements. . .
995 \def\doc@createspecialindexes#1#2#3{%

996 \@temptokena{\space (#2)}%
997 \@temptokenb{#3:}%

998 \@nameedef{SpecialMain#1Index}##1{%
999 \noexpand\@bsphack

1000 \ifdoc@toplevel
1001 \noexpand\special@index{##1\noexpand\actualchar
1002 {\string\ttfamily\space##1}%
1003 \ifx\@nil#2\@nil\else \the\@temptokena \fi
1004 \noexpand\encapchar main}%
1005 \fi
1006 \ifx\@nil#3\@nil\else
1007 \noexpand\special@index{\the\@temptokenb\noexpand\levelchar
1008 ##1\noexpand\actualchar{\string\ttfamily\space##1}%
1009 \noexpand\encapchar main}%
1010 \fi
1011 \noexpand\@esphack}%

1012 \@nameedef{Special#1Index}##1{%
1013 \noexpand\@bsphack
1014 \ifdoc@toplevel
1015 \noexpand\doc@providetarget
1016 \noexpand\index{##1\noexpand\actualchar{\string\ttfamily\space##1}%
1017 \ifx\@nil#2\@nil\else \the\@temptokena \fi
1018 \noexpand\doc@handleencap{usage}}%
1019 \fi
1020 \ifx\@nil#3\@nil\else
1021 \noexpand\index{\the\@temptokenb\noexpand\levelchar
1022 ##1\noexpand\actualchar{\string\ttfamily\space##1}%
1023 \noexpand\doc@handleencap{usage}}%
1024 \fi
1025 \noexpand\@esphack}}

65

1026 \def\doc@createspecialmacrolikeindexes#1#2#3{%

1027 \@temptokena{\space (#2)}%
1028 \@temptokenb{#3:}%

1029 \@nameedef{Code#1Index}##1##2{%
1030 \noexpand\@SpecialIndexHelper@##2\noexpand\@nil
1031 \noexpand\@bsphack
1032 \noexpand\ifdoc@noindex\noexpand\else
1033 \ifdoc@toplevel
1034 \noexpand\special@index{\noexpand\@gtempa\noexpand\actualchar
1035 \string\verb% % to fool emacs highlighting
1036 \noexpand\quotechar*\noexpand\verbatimchar
1037 \noexpand\bslash\noexpand\@gtempa\noexpand\verbatimchar
1038 \ifx\@nil#2\@nil\else \the\@temptokena \fi
1039 \noexpand\encapchar ##1}%
1040 \fi
1041 \ifx\@nil#3\@nil\else
1042 \noexpand\special@index{\the\@temptokenb\noexpand\levelchar
1043 \noexpand\@gtempa\noexpand\actualchar
1044 \string\verb% % to fool emacs highlighting
1045 \noexpand\quotechar*\noexpand\verbatimchar
1046 \noexpand\bslash\noexpand\@gtempa\noexpand\verbatimchar
1047 \noexpand\encapchar ##1}%
1048 \fi
1049 \noexpand\fi
1050 \noexpand\@esphack}%

1051 \@nameedef{SpecialMain#1Index}##1{%
1052 \expandafter\noexpand\csname Code#1Index\endcsname
1053 {main}{##1}}%

1054 \@nameedef{Special#1Index}##1{%
1055 \noexpand\@SpecialIndexHelper@##1\noexpand\@nil
1056 \noexpand\@bsphack
1057 \noexpand\ifdoc@noindex\noexpand\else
1058 \ifdoc@toplevel
1059 \noexpand\doc@providetarget
1060 \noexpand\index{\noexpand\@gtempa\noexpand\actualchar
1061 \string\verb% % to fool emacs highlighting
1062 \noexpand\quotechar*\noexpand\verbatimchar
1063 \noexpand\bslash\noexpand\@gtempa\noexpand\verbatimchar
1064 \ifx\@nil#2\@nil\else \the\@temptokena \fi
1065 \noexpand\doc@handleencap{usage}}%
1066 \fi
1067 \ifx\@nil#3\@nil\else
1068 \noexpand\index{\the\@temptokenb\noexpand\levelchar
1069 \noexpand\@gtempa\noexpand\actualchar
1070 \string\verb% % to fool emacs highlighting
1071 \noexpand\quotechar*\noexpand\verbatimchar
1072 \noexpand\bslash\noexpand\@gtempa\noexpand\verbatimchar
1073 \noexpand\doc@handleencap{usage}}%
1074 \fi
1075 \noexpand\fi
1076 \noexpand\@esphack}}

\doc@createdescribe {⟨item⟩}

66

1077 \def\doc@createdescribe#1{%
1078 \@namedef{Describe#1}{%

Because of the optional argument we have to set \MakePrivateLetters already
before parsing that (fingers crossed). Otherwise incorrect but quite common usage,
such as \DescribeMacro\foo@bar will break because the scan for the optional
argument will tokenize the following input (i.e., \foo in that case) before the @
sign becomes a letter. As a result DescribeMacro would receive only \foo as its
argument.
1079 \begingroup
1080 \MakePrivateLetters
1081 \@ifnextchar[%]
1082 {\doc@describe{#1}}{\doc@describe{#1}[]}}}

\doc@createenv {⟨item⟩}{⟨envname⟩}
1083 \def\doc@createenv#1#2#3{%
1084 \@namedef{#3}{%
1085 \@ifnextchar[%]
1086 {\doc@env{#1}{#2}}{\doc@env{#1}{#2}[]}}%

Instead of \letting the end of the environment to \endtrivlist we use one level
of expansion. This way any possible change in that environment (if that ever
happens) is properly reflected.
1087 \@namedef{end#3}{\endtrivlist}%
1088 % \expandafter\let\csname end#3\endcsname\endtrivlist
1089 }

\@nameedef

1090 \def\@nameedef#1{\expandafter\edef\csname #1\endcsname}

9.4 API creation
The whole user interface is created in one macro call.

defaults:

idxtype = #3
idxgroup = #3s
printtype =

\doc@declareerror

1091 \def\doc@declareerror#1#2{%
1092 \PackageError{doc}{Doc element ’#1/#2’ already defined?\@gobble}%
1093 {There is already a definition for
1094 ’\string\Print#1Name’,\MessageBreak
1095 ’\string\PrintDescribe#1’
1096 or the environment ’#2’.\MessageBreak
1097 Maybe you are overwriting something by mistake!\MessageBreak
1098 Otherwise use ’\string\RenewDocElement’ instead.}%
1099 }

\doc@notdeclarederror

1100 \def\doc@notdeclarederror#1#2{%
1101 \PackageError{doc}{Doc element ’#1/#2’ unknown}%

67

1102 {I expected an existing definition for
1103 ’\string\Print#1Name’,\MessageBreak
1104 ’\string\PrintDescribe#1’ and
1105 the environment ’#2’ but\MessageBreak
1106 not all of them are defined.\MessageBreak
1107 Maybe you wanted to use
1108 ’\string\NewDocElement’?}%
1109 }

\doc@ignoredinfo

1110 \def\doc@ignoredinfo#1#2{%
1111 \PackageInfo{doc}{Doc element ’#1/#2’ declaration
1112 ignored}%
1113 }

\NewDocElement [⟨options⟩]{⟨name⟩}{⟨envname⟩}
1114 \newcommand\NewDocElement[3][]{%

1115 \@ifundefined{Print#2Name}%
1116 {\@ifundefined{PrintDescribe#2}%
1117 {\@ifundefined{#3}%
1118 {\@ifundefined{end#3}%
1119 {\@NewDocElement{#1}}%
1120 \doc@declareerror
1121 }\doc@declareerror
1122 }\doc@declareerror
1123 }\doc@declareerror
1124 {#2}{#3}%
1125 }

\ProvideDocElement [⟨options⟩]{⟨name⟩}{⟨envname⟩} This does nothing unless the doc element could
be declared with \NewDocElement.
1126 \newcommand\ProvideDocElement[3][]{%

1127 \@ifundefined{Print#2Name}%
1128 {\@ifundefined{PrintDescribe#2}%
1129 {\@ifundefined{#3}%
1130 {\@ifundefined{end#3}%
1131 {\@NewDocElement{#1}}%
1132 \doc@ignoredinfo
1133 }\doc@ignoredinfo
1134 }\doc@ignoredinfo
1135 }\doc@ignoredinfo
1136 {#2}{#3}%
1137 }

\RenewDocElement [⟨options⟩]{⟨name⟩}{⟨envname⟩}
1138 \newcommand\RenewDocElement[3][]{%

1139 \@ifundefined{Print#2Name}\doc@notdeclarederror
1140 {\@ifundefined{PrintDescribe#2}\doc@notdeclarederror
1141 {\@ifundefined{#3}\doc@notdeclarederror

68

1142 {\@ifundefined{end#3}\doc@notdeclarederror
1143 {\@NewDocElement{#1}}%
1144 }%
1145 }%
1146 }%
1147 {#2}{#3}%
1148 }

\@NewDocElement {⟨options⟩}{⟨name⟩}{⟨envname⟩}
1149 \def\@NewDocElement#1#2#3{%

1150 \doc@macrolikefalse
1151 \doc@topleveltrue

TODO: Use 2e interface for \keys_set:nn when available

1152 \def\doc@idxtype{#3}%
1153 \def\doc@idxgroup{#3s}%
1154 \let\doc@printtype\@empty
1155 \csname keys_set:nn\endcsname{doc}{#1}%

\Print...Name {⟨name⟩}
TODO: extremely messy this with so many \expandafters . . . should reim-

plement in expl3

1156 \ifx\doc@printtype\@empty
1157 \@temptokena{}%
1158 \else
1159 \@temptokena\expandafter{\expandafter
1160 \textnormal\expandafter{\expandafter
1161 \space\expandafter
1162 (\doc@printtype)}}%
1163 \fi
1164 \@nameedef{Print#2Name}##1{%
1165 {\noexpand\MacroFont
1166 \ifdoc@macrolike
1167 \noexpand\string
1168 \fi
1169 ##1%
1170 \the\@temptokena
1171 }}%

\PrintDescribe... {⟨name⟩}
1172 \expandafter\let\csname PrintDescribe#2\expandafter\endcsname
1173 \csname Print#2Name\endcsname

\SpecialMain...Index {⟨name⟩}

\Special...Index {⟨name⟩}
1174 \edef\doc@expr{%
1175 \ifdoc@macrolike
1176 \noexpand\doc@createspecialmacrolikeindexes
1177 \else
1178 \noexpand\doc@createspecialindexes

69

1179 \fi
1180 {#2}%
1181 }%
1182 \expandafter\expandafter\expandafter
1183 \doc@expr
1184 \expandafter\expandafter\expandafter
1185 {\expandafter\doc@idxtype\expandafter}\expandafter
1186 {\doc@idxgroup}%

\Describe... [⟨options⟩]{⟨name⟩}
1187 \doc@createdescribe{#2}%

\metaDocElement (env.) TODO: can’t have formatting in argument – fix
[⟨options⟩]{⟨name⟩}

1188 \ifdoc@macrolike
1189 \doc@createenv{TT}{#2}{#3}%
1190 \else
1191 \doc@createenv{TF}{#2}{#3}%
1192 \fi
1193 }

9.5 Setting up the default doc elements
9.5.1 Macro facilities

Macros get only a single index entry (no index group, no index type) and they do
not get any label either when printing in the margin.
1194 \NewDocElement[macrolike = true ,
1195 idxtype = ,
1196 idxgroup = ,
1197 printtype =
1198]{Macro}{macro}

\SpecialMainIndex In doc v2 we had \SpecialMainIndex and \SpecialMainEnvIndex but now with
additional doc elements we always add the element name after “Main” so this
would be \SpecialMainMacroIndex. We use \def not \let so any redefinition of
\SpecialMainMacroIndex will be transparent.
1199 \def\SpecialMainIndex{\SpecialMainMacroIndex}

\SpecialUsageIndex doc v2 also had \SpecialUsageIndex which is now called \SpecialMacroIndex
generating the “usage” index entry for a macro. Again we provide that as an alias
via \def.

In fact the documentation of doc v2 claimed that one can use this for both
macros and environments but that was never true as for environments the result
was that the first character was dropped in sorting of the index. The correct way
is to use \SpecialEnvIndex for this.
1200 \def\SpecialUsageIndex{\SpecialMacroIndex}

\SpecialIndex

1201 \def\SpecialIndex {\CodeMacroIndex{code}}

70

9.5.2 Environment facilities

Providing documentation support for environments. Here we differ from doc V2
by marking the environments with “(env.)” when printing the name in the margin.
1202 \NewDocElement[macrolike = false ,
1203 idxtype = env. ,
1204 idxgroup = environments ,
1205 printtype = \textit{env.}
1206]{Env}{environment}

To be able to restore the definition after hypdoc is loaded we better save them
beforehand. We only load the package at the end of the preamble, but the user
might do this earlier and then chaos is ensured. Thus, to support this generally
we save them directly before the package is loaded. In this way the user can still
alter the definition for \PrintDescribeMacro and friends in the preamble.
1207 \AddToHook{package/hypdoc/before}{%
1208 \let\@@PrintDescribeMacro \PrintDescribeMacro
1209 \let\@@PrintDescribeEnv \PrintDescribeEnv
1210 \let\@@PrintMacroName \PrintMacroName
1211 \let\@@PrintEnvName \PrintEnvName
1212 \let\@@SpecialUsageIndex \SpecialUsageIndex
1213 \let\@@SpecialEnvIndex \SpecialEnvIndex
1214 \let\@@SortIndex \SortIndex
1215 \let\@@DescribeMacro \DescribeMacro
1216 \let\@@DescribeEnv \DescribeEnv
1217 }

After hypdoc got loaded we need to reset those macros again. This is done in the
generic hook package/hypdoc/after.
1218 \AddToHook{package/hypdoc/after}{%
1219 \let\PrintDescribeMacro \@@PrintDescribeMacro
1220 \let\PrintDescribeEnv \@@PrintDescribeEnv
1221 \let\PrintMacroName \@@PrintMacroName
1222 \let\PrintEnvName \@@PrintEnvName
1223 \let\SpecialUsageIndex \@@SpecialUsageIndex
1224 \let\SpecialEnvIndex \@@SpecialEnvIndex
1225 \let\SortIndex \@@SortIndex
1226 \let\DescribeMacro \@@DescribeMacro
1227 \let\DescribeEnv \@@DescribeEnv
1228 }

10 Misc additions
\cs

1229 \DeclareRobustCommand\cs[1]{\texttt{\bslash #1}}

amsdtx has its own definition for \cs but that now gets overwritten because the
class loads doc afterwards. So for now we reinstall it here.

TODO: fix elsewhere

1230 \AddToHook{class/amsdtx/after}{%
1231 \DeclareRobustCommand\cs[1]{%
1232 \@boxorbreak{%
1233 \ntt

71

1234 \addbslash#1\@empty
1235 \@xp\@xp\@xp\@indexcs\@xp\@nobslash\string#1\@nil
1236 }%
1237 }%
1238 \def\cn{\cs}%
1239 }

We can now finish the docstrip main module.
1240 ⟨/package⟩

References
[1] G. A. Bürger. Wunderbare Reisen zu Wasser und zu Lande, Feldzüge und

lustige Abenteuer des Freyherrn v. Münchhausen. London, 1786 & 1788.

[2] D. E. Knuth. Literate Programming. Computer Journal, Vol. 27, pp. 97–111,
May 1984.

[3] D. E. Knuth. Computers & Typesetting (The TEXbook). Addison-Wesley,
Vol. A, 1986.

[4] L. Lamport. MakeIndex: An Index Processor for LATEX. 17 February 1987.
(Taken from the file makeindex.tex provided with the program source code.)

[5] Frank Mittelbach. The doc-option. TUGboat, Vol. 10(2), pp. 245–273,
July 1989.

[6] Frank Mittelbach, Denys Duchier and Johannes Braams.
docstrip.dtx. The file is part of core LATEX.

[7] R. E. Raspe (*1737, †1797). Baron Münchhausens narrative of his marvelous
travels and campaigns in Russia. Oxford, 1785.

[8] Rainer Schöpf. A New Implementation of LATEX’s verbatim and verbatim*
Environments. File verbatim.doc, version 1.4i.

Index
Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\- ℓ-195, ℓ-824
\^ ℓ-389, ℓ-828
^^A . 5, ℓ-22
^^X . 5, ℓ-22

L
LATEX commands:

\@@DescribeEnv ℓ-1216, ℓ-1227

\@@DescribeMacro . . . ℓ-1215, ℓ-1226
\@@PrintDescribeEnv ℓ-1209, ℓ-1220
\@@PrintDescribeMacro

. ℓ-1208, ℓ-1219
\@@PrintEnvName . . . ℓ-1211, ℓ-1222
\@@PrintMacroName . . ℓ-1210, ℓ-1221
\@@SortIndex ℓ-1214, ℓ-1225
\@@SpecialEnvIndex . ℓ-1213, ℓ-1224
\@@SpecialUsageIndex ℓ-1212, ℓ-1223

72

\@MakeShortVerb ℓ-709, ℓ-710, ℓ-711
\@NewDocElement

. . . ℓ-1119, ℓ-1131, ℓ-1143, ℓ-1149
\@SpecialIndexHelper@

. ℓ-384, ℓ-466, ℓ-1030, ℓ-1055
\@auxout ℓ-323, ℓ-335
\@boxorbreak ℓ-1232
\@doc@describe ℓ-977, ℓ-993
\@doc@env ℓ-911, ℓ-975
\@doc@env@ ℓ-911
\@idxitem

. . ℓ-512, ℓ-518, ℓ-554, ℓ-626, ℓ-633
\@ifnextchar ℓ-1081, ℓ-1085
\@indexcs ℓ-1235
\@indexfile ℓ-839
\@input@ ℓ-579, ℓ-656
\@labels ℓ-69
\@makefntext ℓ-695
\@minipagefalse ℓ-81
\@nameedef ℓ-998, ℓ-1012, ℓ-1029,

ℓ-1051, ℓ-1054, ℓ-1090, ℓ-1164
\@nameuse

. . ℓ-955, ℓ-967, ℓ-968, ℓ-982, ℓ-985
\@newlistfalse ℓ-80
\@nobslash ℓ-1235
\@restonecolfalse ℓ-515, ℓ-630
\@restonecoltrue ℓ-515, ℓ-630
\@setupverbvisiblespace . . . ℓ-218
\@shortvrbdef

. ℓ-709, ℓ-710, ℓ-713, ℓ-722
\@shortvrbinfo

. . ℓ-713, ℓ-726, ℓ-732, ℓ-736, ℓ-750
\@sxverbatim ℓ-219
\@temptokena ℓ-996,

ℓ-1003, ℓ-1017, ℓ-1027, ℓ-1038,
ℓ-1064, ℓ-1157, ℓ-1159, ℓ-1170

\@temptokenb ℓ-994, ℓ-997, ℓ-1007,
ℓ-1021, ℓ-1028, ℓ-1042, ℓ-1068

\@verbatim ℓ-220
\@xp ℓ-1235
__doc_dont_index:n

. ℓ-302, ℓ-305, ℓ-307
__doc_dont_index_aux:n

. ℓ-302, ℓ-310, ℓ-312
__doc_idxtype_put:Nn

. ℓ-321, ℓ-321, ℓ-332
__doc_idxtype_put:nn

. . ℓ-322, ℓ-327, ℓ-334, ℓ-340, ℓ-340
__doc_idxtype_put_scan:nn . .

. ℓ-333, ℓ-333, ℓ-338
__doc_idxtype_put_scan:on . .

. ℓ-338, ℓ-339
__doc_maybe_index:o

. ℓ-354, ℓ-354, ℓ-358

__doc_maybe_index_aux:Nnn . .
. ℓ-373, ℓ-426, ℓ-426

__doc_maybe_index_aux:nN . . .
. ℓ-355, ℓ-360, ℓ-364, ℓ-364

__doc_maybe_index_short:o . .
. ℓ-359, ℓ-359, ℓ-363

__doc_trace:x ℓ-299,
ℓ-299, ℓ-309, ℓ-317, ℓ-344,
ℓ-347, ℓ-365, ℓ-368, ℓ-378, ℓ-429

\active@escape@char
. ℓ-48, ℓ-244, ℓ-257

\add@special ℓ-714, ℓ-755
\addbslash ℓ-1234
\AddToHook

ℓ-887, ℓ-900, ℓ-1207, ℓ-1218, ℓ-1230
\AmSTeX ℓ-864
\AtBeginDocument ℓ-25, ℓ-129
\AtEndDocument ℓ-329
\BibTeX ℓ-864
\blank@linefalse ℓ-73, ℓ-89
\blank@linetrue ℓ-75, ℓ-89
\box . ℓ-69
\c@CodelineNo

. . . ℓ-83, ℓ-841, ℓ-851, ℓ-959, ℓ-962
\c@GlossaryColumns . . . ℓ-621, ℓ-624
\c@HD@hypercount ℓ-903
\c@IndexColumns ℓ-507, ℓ-511
\c@StandardModuleDepth

. ℓ-172, ℓ-177, ℓ-184
\c_left_brace_str ℓ-395, ℓ-396, ℓ-402
\c_right_brace_str

. ℓ-398, ℓ-400, ℓ-404
\ch@angle ℓ-143, ℓ-144
\ch@percent ℓ-133, ℓ-139
\ch@plus@etc ℓ-147, ℓ-149
\changes@ ℓ-596, ℓ-597
\character@table ℓ-799, ℓ-800
\check@angle ℓ-141, ℓ-143
\check@checksum ℓ-660, ℓ-774
\check@module . . . ℓ-85, ℓ-86, ℓ-130
\check@modulesfalse ℓ-136
\check@modulestrue . . . ℓ-137, ℓ-138
\check@percent ℓ-234, ℓ-239
\check@plus@etc ℓ-149
\clist ℓ-914
\clist_map_function:nN ℓ-310
\close@crossref ℓ-95, ℓ-262
\cn ℓ-1238
\codeline@index ℓ-834
\codeline@indexfalse . ℓ-834, ℓ-849
\codeline@indextrue . . ℓ-835, ℓ-846
\codeline@wrindex ℓ-836, ℓ-847
\CodelineIndex ℓ-845
\CodeMacroIndex ℓ-927, ℓ-1201

73

\columnsep ℓ-516, ℓ-548, ℓ-631
\columnseprule ℓ-516, ℓ-631
\cs:w ℓ-352
\cs_end: ℓ-352
\cs_generate_variant:Nn

. ℓ-338, ℓ-353
\cs_if_exist:NTF ℓ-427
\cs_new:Npn

. . . ℓ-299, ℓ-302, ℓ-307, ℓ-312,
ℓ-321, ℓ-326, ℓ-333, ℓ-340, ℓ-351,
ℓ-354, ℓ-359, ℓ-364, ℓ-383, ℓ-426

\cs_set_eq:NN ℓ-315,
ℓ-330, ℓ-332, ℓ-339, ℓ-358, ℓ-363

\cs_to_str:N . . . ℓ-322, ℓ-327, ℓ-389
\DeclareKeys ℓ-26
\DeclareRobustCommand

. ℓ-672, ℓ-1229, ℓ-1231
\default~table . ℓ-803, ℓ-810, ℓ-815
\DescribeEnv ℓ-1216, ℓ-1227
\DescribeMacro ℓ-1215, ℓ-1226
\doc@createdescribe ℓ-1077, ℓ-1187
\doc@createenv ℓ-1083, ℓ-1189, ℓ-1191
\doc@createspecialindexes . . .

. ℓ-995, ℓ-1178
\doc@createspecialmacrolikeindexes

. ℓ-1026, ℓ-1176
\doc@createspecialmainindex ℓ-995
\doc@createspecialmainmacrolikeindex

. ℓ-995
\doc@declareerror ℓ-1091,

ℓ-1120, ℓ-1121, ℓ-1122, ℓ-1123
\doc@describe ℓ-990, ℓ-1082
\doc@env ℓ-966, ℓ-1086
\doc@eoph@@k ℓ-889, ℓ-891
\doc@expr ℓ-1174, ℓ-1183
\doc@handleencap ℓ-903,

ℓ-906, ℓ-1018, ℓ-1023, ℓ-1065, ℓ-1073
\doc@hyperreftrue ℓ-45
\doc@idxgroup . ℓ-41, ℓ-1153, ℓ-1186
\doc@idxtype . . ℓ-40, ℓ-1152, ℓ-1185
\doc@ignoredinfo ℓ-1110,

ℓ-1132, ℓ-1133, ℓ-1134, ℓ-1135
\doc@macrolikefalse ℓ-1150
\doc@multicoltrue ℓ-46
\doc@noindexdefault ℓ-54, ℓ-57, ℓ-968
\doc@noprintdefault . . ℓ-52, ℓ-967
\doc@notdeclarederror ℓ-1100,

ℓ-1139, ℓ-1140, ℓ-1141, ℓ-1142
\doc@printtype

. ℓ-42, ℓ-1154, ℓ-1156, ℓ-1162
\doc@providetarget ℓ-902,

ℓ-905, ℓ-953, ℓ-981, ℓ-1015, ℓ-1059
\doc@topleveltrue ℓ-47, ℓ-1151

\doc_dont_index:n
. 37, ℓ-302, ℓ-302, ℓ-315

\DocstyleParms ℓ-862
\documentclass ℓ-2
\DoNotIndex ℓ-315, ℓ-964
\encodingdefault

. ℓ-99, ℓ-105, ℓ-115, ℓ-121
\endmacrocode . . . ℓ-90, ℓ-201, ℓ-689
\endmacrocode* ℓ-200
\endtheindex ℓ-513
\ensuremath ℓ-673, ℓ-683
\env ℓ-901
\exp_after:wN ℓ-352
\exp_args:co ℓ-351, ℓ-351
\exp_args:Ncno ℓ-373
\exp_args:Nf ℓ-334, ℓ-355
\exp_args:NNf ℓ-341
\exp_args:No ℓ-360, ℓ-379
\exp_args:Nx ℓ-322, ℓ-327
\ExplSyntaxOff ℓ-444, ℓ-917
\ExplSyntaxOn ℓ-296, ℓ-911
\filedate ℓ-882
\fileinfo ℓ-884
\filename ℓ-880
\fileversion ℓ-883
\font ℓ-678, ℓ-679
\fontencoding ℓ-105, ℓ-121
\fontfamily ℓ-106, ℓ-122
\fontseries ℓ-107, ℓ-123
\fontshape ℓ-108, ℓ-124
\g__doc_idxtype_prop

. . . . 37, ℓ-297, ℓ-319, ℓ-348, ℓ-371
\GetFileInfo ℓ-879
\glossary@prologue

. ℓ-625, ℓ-632, ℓ-644
\group_begin: ℓ-303
\group_end: ℓ-308
\HD@codeline@wrindex ℓ-895
\HD@page@wrindex ℓ-897
\HD@target ℓ-902
\hdclindex ℓ-907
\hdpindex ℓ-908
\hyphenchar ℓ-678, ℓ-679
\if@compatibility ℓ-97, ℓ-113
\if@filesw ℓ-836
\ifblank@line ℓ-73, ℓ-89
\ifcheck@modules ℓ-131, ℓ-136
\ifcodeline@index

. . . ℓ-82, ℓ-534, ℓ-538, ℓ-834, ℓ-894
\ifdoc@hyperref ℓ-888
\ifdoc@macrolike

. ℓ-1166, ℓ-1175, ℓ-1188
\ifdoc@multicol ℓ-508, ℓ-622

74

\ifdoc@noindex . . . ℓ-53, ℓ-386,
ℓ-480, ℓ-958, ℓ-984, ℓ-1032, ℓ-1057

\ifdoc@noprint . . ℓ-52, ℓ-948, ℓ-978
\ifdoc@outer ℓ-971
\ifdoc@reportchangedates . . ℓ-599
\ifdoc@toplevel

. . . ℓ-1000, ℓ-1014, ℓ-1033, ℓ-1058
\ifhmode ℓ-232
\ifnot@excluded ℓ-291
\ifpm@module ℓ-91, ℓ-130
\ifscan@allowed ℓ-49, ℓ-266
\index@prologue ℓ-511, ℓ-517, ℓ-527
\indexentry ℓ-840
\indexspace ℓ-557
\init@checksum ℓ-661, ℓ-772
\init@crossref ℓ-88, ℓ-253
\interlinepenalty ℓ-76, ℓ-229, ℓ-232
\iow_term:x ℓ-300
\it@is@a ℓ-495, ℓ-502
\itshape ℓ-685
\l@nohyphenation

. ℓ-224, ℓ-669, ℓ-670, ℓ-680
\l__doc_donotindex_seq

37, ℓ-297, ℓ-313, ℓ-318, ℓ-342, ℓ-366
\l__doc_idxtype_tl

. ℓ-371, ℓ-374, ℓ-430, ℓ-435
\labelsep ℓ-212
\language ℓ-224, ℓ-680
\legacy_if:nTF ℓ-300
\m@th ℓ-694, ℓ-696
\macro@code . ℓ-61, ℓ-64, ℓ-200, ℓ-687
\macro@finish ℓ-287, ℓ-289
\macro@font ℓ-70, ℓ-112, ℓ-178, ℓ-185
\macro@name ℓ-275, ℓ-283, ℓ-286
\macro@namepart . ℓ-263, ℓ-279,

ℓ-280, ℓ-283, ℓ-290, ℓ-292, ℓ-294
\macro@switch ℓ-268, ℓ-274
\macrocode ℓ-61
\makeglossary ℓ-619
\marginparpush ℓ-211
\marginparsep ℓ-212
\marginparwidth ℓ-211
\mathsf ℓ-192
\maybe@index@macro 40, ℓ-294, ℓ-354
\maybe@index@short@macro

. ℓ-280, ℓ-359
\mddefault ℓ-101, ℓ-107, ℓ-117, ℓ-123
\MessageBreak

. . ℓ-438, ℓ-440, ℓ-1094, ℓ-1096,
ℓ-1097, ℓ-1103, ℓ-1105, ℓ-1106

\meta@font@select ℓ-676, ℓ-685
\meta@hyphen@restore . ℓ-677, ℓ-682
\mod@math@codes ℓ-192, ℓ-194
\Module . . ℓ-170, ℓ-175, ℓ-182, ℓ-191

\more@macroname ℓ-284, ℓ-285
\newcommand

. . . . ℓ-658, ℓ-1114, ℓ-1126, ℓ-1138
\newcounter ℓ-189
\newhelp ℓ-832
\newif ℓ-49, ℓ-89, ℓ-135, ℓ-138, ℓ-834
\newlanguage ℓ-670
\nfss@text ℓ-674
\noindent ℓ-695
\ntt ℓ-1233
\PackageError

ℓ-434, ℓ-787, ℓ-808, ℓ-1092, ℓ-1101
\PackageInfo . . ℓ-751, ℓ-752, ℓ-1111
\pdfstringdefDisableCommands ℓ-901
\PlainTeX ℓ-874
\pm@module ℓ-152, ℓ-154, ℓ-162, ℓ-166
\pm@modulefalse ℓ-91, ℓ-132
\pm@moduletrue ℓ-169
\predisplaypenalty ℓ-66, ℓ-215, ℓ-217
\Print ℓ-1094, ℓ-1103
\PrintDescribe ℓ-1095, ℓ-1104
\PrintDescribeEnv . . ℓ-1209, ℓ-1220
\PrintDescribeMacro ℓ-1208, ℓ-1219
\PrintEnvName ℓ-1211, ℓ-1222
\PrintMacroName . . . ℓ-1210, ℓ-1221
\ProcessKeyOptions ℓ-48
\prop_get:NnNTF ℓ-371
\prop_gput:Nnn ℓ-348
\prop_new:N ℓ-298
\prop_show:N ℓ-319
\protected@edef ℓ-598
\protected@write ℓ-323, ℓ-335
\ps@plain ℓ-704
\record@index@type@save

. ℓ-339, ℓ-929
\RecordIndexTypeAux . . ℓ-321, ℓ-336
\rem@special . . . ℓ-740, ℓ-756, ℓ-761
\RequirePackage ℓ-509, ℓ-890
\reserved@a ℓ-389, ℓ-392,

ℓ-395, ℓ-400, ℓ-406, ℓ-412, ℓ-416
\reserved@b ℓ-390, ℓ-393,

ℓ-396, ℓ-404, ℓ-408, ℓ-413, ℓ-419
\reserved@c ℓ-391, ℓ-394,

ℓ-397, ℓ-405, ℓ-409, ℓ-414, ℓ-421
\reset@font ℓ-856
\reversemarginpar ℓ-210
\rmfamily . ℓ-199, ℓ-854, ℓ-868, ℓ-872
\saved@indexname

. . ℓ-607, ℓ-617, ℓ-923, ℓ-930, ℓ-933
\saved@macroname

. . . ℓ-602, ℓ-611, ℓ-616, ℓ-921,
ℓ-923, ℓ-933, ℓ-955, ℓ-961, ℓ-964

\scan@allowedfalse
. ℓ-49, ℓ-55, ℓ-271, ℓ-281

75

\scan@allowedtrue ℓ-49, ℓ-272, ℓ-282
\scan@macro ℓ-257, ℓ-263
\scshape ℓ-873
\seq_if_in:NnTF ℓ-342, ℓ-366
\seq_new:N ℓ-297
\seq_put_right:Nx ℓ-313
\seq_show:N ℓ-318
\set@display@protect ℓ-838
\shapedefault ℓ-102, ℓ-108
\short@macro ℓ-276, ℓ-278
\ShowIndexingState ℓ-316
\slash@module ℓ-158, ℓ-174
\sldefault ℓ-118, ℓ-124
\SliTeX ℓ-864
\special@escape@char

. ℓ-244, ℓ-256, ℓ-264
\special@index ℓ-415,

ℓ-485, ℓ-491, ℓ-497, ℓ-502, ℓ-844,
ℓ-847, ℓ-850, ℓ-892, ℓ-895, ℓ-897,
ℓ-1001, ℓ-1007, ℓ-1034, ℓ-1042

\SpecialEnvIndex . . . ℓ-1213, ℓ-1224
\SpecialIndex . ℓ-292, ℓ-356, ℓ-1201
\SpecialMacroIndex ℓ-1200
\SpecialMainIndex ℓ-1199
\SpecialMainMacroIndex . . . ℓ-1199
\SpecialShortIndex . . . ℓ-361, ℓ-383
\SpecialUsageIndex

. ℓ-1200, ℓ-1212, ℓ-1223
\star@module ℓ-156, ℓ-174
\step@checksum ℓ-265, ℓ-798
\str_case_e:nnF ℓ-387
\subitem ℓ-554
\subsubitem ℓ-554
\sxmacro@code ℓ-200, ℓ-207
\textit ℓ-577, ℓ-1205
\textnormal ℓ-1160
\textsc ℓ-869, ℓ-874, ℓ-875
\texttt ℓ-410, ℓ-1229
\theCodelineNo ℓ-84, ℓ-852
\theindex ℓ-515
\tl_to_str:n

. ℓ-309, ℓ-334, ℓ-342, ℓ-353
\tl_to_str:o ℓ-353, ℓ-355
\tl_use:N ℓ-374, ℓ-430, ℓ-435
\tolerance ℓ-859
\ttdefault ℓ-100, ℓ-106, ℓ-116, ℓ-122
\ttfamily

. . . ℓ-1002, ℓ-1008, ℓ-1016, ℓ-1022
\unpenalty ℓ-237
\use_none:n ℓ-300
\use_none:nn ℓ-330
\used~table ℓ-802, ℓ-803, ℓ-811
\usefont ℓ-99, ℓ-115
\usepackage ℓ-4, ℓ-5

\verbatim ℓ-215
\verbatim@font ℓ-236
\voidb@x ℓ-69
\Web ℓ-874
\wrong@table ℓ-809, ℓ-832
\xmacro@code ℓ-63, ℓ-202

LATEX counters:
CodelineNo ℓ-851
GlossaryColumns 14, ℓ-620
IndexColumns 11, ℓ-506
StandardModuleDepth 14, ℓ-189

LATEX length (dimen):
\columnsep 11
\GlossaryMin 14, ℓ-620, ℓ-625
\hfuzz ℓ-15
\IndexMin 11, 12, ℓ-506, ℓ-511
\MacroIndent 6, 12, ℓ-71, ℓ-197
\marginparpush 12
\marginparwidth 12
\mathsurround 11
\parindent 11

LATEX length (skip):
\MacrocodeTopsep . 6, 12, ℓ-65, ℓ-197
\MacroTopsep . . . 6, 12, ℓ-243, ℓ-919
\parfillskip 11
\parskip 11
\rightskip 11

P
Package commands (obsolete):

\CharacterTable 18, ℓ-799
\CharTableChanges ℓ-799, ℓ-814
\CheckSum 18, ℓ-797
\docdate 22
\filedate 22
\fileversion 22
\OldMakeindex 18, ℓ-496
\StopEventually 12, ℓ-668

Package commands:
* 10, ℓ-575, ℓ-823
\@idxitem 11
\actualchar

. 10, ℓ-389, ℓ-392, ℓ-395, ℓ-400,
ℓ-407, ℓ-412, ℓ-455, ℓ-481, ℓ-485,
ℓ-491, ℓ-497, ℓ-502, ℓ-604, ℓ-608,
ℓ-1001, ℓ-1008, ℓ-1016, ℓ-1022,
ℓ-1034, ℓ-1043, ℓ-1060, ℓ-1069

\AlsoImplementation 13, ℓ-658
\AltMacroFont 14, ℓ-112, ℓ-172, ℓ-178
\bslash . 14, ℓ-213, ℓ-254, ℓ-292,

ℓ-336, ℓ-344, ℓ-347, ℓ-365, ℓ-368,
ℓ-375, ℓ-378, ℓ-379, ℓ-418, ℓ-488,
ℓ-493, ℓ-499, ℓ-505, ℓ-1037,
ℓ-1046, ℓ-1063, ℓ-1072, ℓ-1229

76

\changes 13, ℓ-594
\CheckModules 14, ℓ-136
\code 11, ℓ-578
\CodelineIndex 9, ℓ-11
\CodelineNumbered 9, ℓ-834
\cs ℓ-1229
\DeleteShortVerb 12, ℓ-730
\Describe... ℓ-1187
\DescribeEnv 5
\DescribeMacro 5
\DisableCrossrefs . . 9, ℓ-10, ℓ-271
\DocInput 3, ℓ-18, ℓ-878
\DocstyleParms 11
\DoNotIndex 9, 37
\DontCheckModules 14, ℓ-136
\efill ℓ-559
\EnableCrossrefs ℓ-9, 9, ℓ-271
\encapchar 10, ℓ-422, ℓ-464, ℓ-903,

ℓ-906, ℓ-1004, ℓ-1009, ℓ-1039, ℓ-1047
\Finale 13, ℓ-658
\generalname ℓ-605, ℓ-618
\GlossaryParms 14, ℓ-626, ℓ-633, ℓ-651
\GlossaryPrologue 14, ℓ-644
\IndexInput 3, 13, ℓ-686
\IndexParms

. . . . 11, ℓ-512, ℓ-518, ℓ-545, ℓ-651
\IndexPrologue 11, ℓ-527
\LeftBraceIndex ℓ-484
\levelchar 10, ℓ-455, ℓ-601,

ℓ-614, ℓ-1007, ℓ-1021, ℓ-1042, ℓ-1068
\MacroFont 6, ℓ-96,

ℓ-129, ℓ-185, ℓ-216, ℓ-219, ℓ-1165
\main 11, ℓ-576
\MakePercentComment . . ℓ-876, ℓ-878
\MakePercentIgnore

. ℓ-595, ℓ-876, ℓ-878
\MakePrivateLetters 14,

ℓ-255, ℓ-260, ℓ-304, ℓ-974, ℓ-1080
\MakeShortVerb 12, ℓ-705
\MakeShortVerb* 12, ℓ-705
\maketitle 13, ℓ-691
\MaybeStop 12, ℓ-658, ℓ-668
\meta 12, ℓ-669
\Module 14
\NewDocElement 7,

ℓ-440, ℓ-1108, ℓ-1114, ℓ-1194, ℓ-1202
\OnlyDescription ℓ-7, 12, ℓ-14, ℓ-658
\PageIndex 9, ℓ-848
\percentchar

. . ℓ-140, ℓ-148, ℓ-160, ℓ-495, ℓ-496
\PercentIndex ℓ-494, ℓ-496
\pfill ℓ-565
\Print...Name ℓ-1156
\PrintChanges 14, ℓ-656

\PrintDescribe... ℓ-1172
\PrintDescribeEnv 6
\PrintDescribeMacro 6
\PrintEnvName 6
\PrintIndex 11, ℓ-579
\PrintMacroName 6
\ProvideDocElement 7, ℓ-1126
\ps@titlepage 13, ℓ-703
\quotechar

. 10, ℓ-406, ℓ-412, ℓ-413, ℓ-418,
ℓ-455, ℓ-487, ℓ-488, ℓ-493, ℓ-497,
ℓ-499, ℓ-502, ℓ-504, ℓ-505, ℓ-603,
ℓ-610, ℓ-1036, ℓ-1045, ℓ-1062, ℓ-1071

\RecordChanges ℓ-12, 14, ℓ-619
\RecordIndexType . . 37, ℓ-321, ℓ-437
\RenewDocElement . 7, ℓ-1098, ℓ-1138
\RightBraceIndex ℓ-484
\SetupDoc 4, ℓ-13, ℓ-50, ℓ-60
\ShowIndexingState 37
\SortIndex 10, ℓ-479, ℓ-1214, ℓ-1225
\Special...Index ℓ-1174
\SpecialEnvIndex 10
\SpecialEscapechar

. 8, ℓ-244, ℓ-259, ℓ-262
\SpecialIndex 10
\SpecialMacroIndex 10
\SpecialMain...Index ℓ-1174
\SpecialMainEnvIndex 10
\SpecialMainMacroIndex 10
\SpecialShortIndex 10
\theCodelineNo 9
\usage 11, ℓ-577
\verb . 8
\verbatimchar

. 10, ℓ-406, ℓ-410, ℓ-418, ℓ-420,
ℓ-465, ℓ-487, ℓ-488, ℓ-493, ℓ-499,
ℓ-500, ℓ-504, ℓ-505, ℓ-611, ℓ-612,
ℓ-1036, ℓ-1037, ℓ-1045, ℓ-1046,
ℓ-1062, ℓ-1063, ℓ-1071, ℓ-1072

Package environments:
⟨DocElement ⟩ ℓ-1188
environment 6
macro . 6
macrocode 5, ℓ-61
macrocode* 5, ℓ-200
theglossary ℓ-622
theindex 11, ℓ-508
verbatim 8, ℓ-215
verbatim* 8, ℓ-215

Package options:
debugshow 4
envlike 7
hyperref 4
idxgroup 7

77

idxtype 7
macrolike 7
multicol 4
nohyperref 4
noindex 4
nomulticol 4
noprint 4
notoplevel 7
printtype 7
reportchangedates 4
toplevel 7

T
TEX counters:

\bslash@cnt ℓ-773,
ℓ-779, ℓ-782, ℓ-788, ℓ-795, ℓ-798

\check@sum ℓ-775, ℓ-776,
ℓ-782, ℓ-788, ℓ-794, ℓ-795, ℓ-797

\guard@level ℓ-171, ℓ-172,
ℓ-176, ℓ-177, ℓ-183, ℓ-184, ℓ-190

\hbadness ℓ-16
\macro@cnt ℓ-242, ℓ-939, ℓ-944, ℓ-946
\tolerance 12

Change History

BHK – 1989/04/26
\changes: Changed definition of

\protect. 49
Documented \changes
command. 49

\glossary@prologue: Added to
support \changes. 51

GlossaryColumns: Added to
support \changes. 50

\GlossaryMin: Added to support
\changes. 50

\GlossaryParms: Added to
support \changes. 51

\GlossaryPrologue: Added to
support \changes. 51

\PrintChanges: Added to support
\changes. 51

\RecordChanges: Renames former
\PrintChanges command. . . . 50

\saved@macroname: Provided for
sorting outside macro
environment 49

theglossary: Added to support
\changes. 50

v1.0p – 1994/05/21
General: Use new error commands 1

v1.4? – 1989/04/16
General: changes to the index env. 45

v1.4? – 1989/04/19
General: use DEK’s algorithm and

implement a twocols env. 45
v1.4r – 1989/04/22

General: twocols env. placed into
separate file 45

v1.4t – 1989/04/24
\endtheindex: Incorporated new

multicols env. 45
IndexColumns: Counter added. . . 45
\meta: Macro added. 52
theindex: Incorporated new

multicols env. 45
v1.5a – 1989/04/26

General: Now input multicol.sty
instead of multcols.sty 45

theindex: Call multicols first . . . 45
v1.5c – 1989/04/27

\short@macro: Corrected bad bug
by putting the
scan@allowedfalse macro before
printing the argument. 35

v1.5d – 1989/04/28
General: \marginparwidth setting

added. 30
v1.5f – 1989/04/29

General: Thanks to Brian who
documented the \changes
macro feature. 1

v1.5g – 1989/05/07
General: MacroTopsep now called

MacrocodeTopsep and new
MacroTopsep added 1

\PlainTeX: space between plain
and TeX changed. 60

v1.5h – 1989/05/17
General: All lines shortened to <72

characters 1
v1.5i – 1989/06/07

General: Avoid reading the file
twice. 22

\check@percent: Definition
changed to ‘long’ 32

78

Macro \next used to guard
against macro with arguments 32

v1.5j – 1989/06/09
General: Corrections by Ron

Whitney added 1
\AmSTeX: Macro AmsTeX renamed

to AmSTeX 60
\maketitle: thispagestyle plain

removed 53
v1.5k – 1989/08/17

\macro@cnt: Fix for save stack
problem. 32

v1.5k – 1989/09/04
\bslash@cnt: Macro added to

support checksum. 57
\check@checksum: Macro added to

support checksum. 56
\check@sum: Macro added to

support checksum. 57
\CheckSum: Macro added to

support checksum. 57
\Finale: Support for checksum. . 51
\init@checksum: Macro added to

support checksum. 56
\maketitle: Added

\ps@titlepage 53
\MaybeStop: Support for

checksum. 51
\PrintIndex: \printindex

changed to \PrintIndex 48
\ps@titlepage: Added

\ps@titlepage 54
\scan@macro: Support for

checksum added. 34
\step@checksum: Macro added to

support checksum. 57
v1.5l – 1989/09/10

CodelineNo: Counter added to
support code line numbers . . . 59

\macro@code: Code line numbers
supported. 25

v1.5m – 1989/09/20
\changes: \actualchar in second

level removed. 49
\CharacterTable: Macro added to

check character translation
problems. 57

v1.5o – 1989/09/24
\changes: New sorting. 49

v1.5p – 1989/09/28
theglossary: Now call \multicols

first. 50

v1.5q – 1989/11/01
\CharacterTable: Made character

table more readable. 57
v1.5q – 1989/11/03

General: ‘. . . Listing macros
renamed to ‘. . . Input.
Suggested by R. Wonneberger . 1

v1.5r – 1989/11/04
\endmacrocode: Support for code

line no. (Undoc) 25
macrocode: Support for code line

no. (Undoc) 24
v1.5s – 1989/11/05

\codeline@index: Support for
code line no. (Undoc) 58

\it@is@a: Support for code line
no. (Undoc) 45

\LeftBraceIndex: Support for
code line no. (Undoc) 44

\MacroIndent: Support for code
line no. (Undoc) 29

\PercentIndex: Support for code
line no. (Undoc) 44

\RightBraceIndex: Support for
code line no. (Undoc) 44

v1.5t – 1989/11/07
\CharacterTable: Make ˜ letter in

chartable macros. 57
\IndexInput: Call \endmacrocode

instead of \endtrivlist. . . . 53
\macro@code: Call \leavevmode to

get \everypar on blank lines. 25
Common code added. 25

macrocode: Common code moved
to \macro@code. 24

v1.5u – 1989/11/14
\CharacterTable: Made @ other

in default table. 57
\check@percent: equal sign added. 32
\CodelineIndex: Added

\PageIndex and
\CodelineIndex (Undoc) . . . 59

\DocstyleParms: \DocStyleParms
now empty 60

v1.5v – 1990/01/28
\changes: ‘Re-code a lot of chars. 49

v1.5w – 1990/02/03
\meta: Breaks at space allowed. . 52

v1.5w – 1990/02/05
General: Counter codelineno

renamed to CodelineNo 1
\macro@code: Skip of

\@totalleftmargin added. . . 25

79

v1.5x – 1990/02/17
\MacroFont: \math@fontsfalse

added for NFSS. 25
v1.5y – 1990/02/24

CodelineNo: Default changed. . . 59
\MacroIndent: Default changed. . 29

v1.5z – 1990/04/22
\Finale: Define \Finale globally. 51

v1.6a – 1990/05/24
\meta: Extra space bug corrected. 52

v1.6b – 1990/06/15
CodelineNo: \rm moved before

\scriptsize to avoid
unnecessary fontwarning. 59

\MacroIndent: \rm moved before
\scriptsize to avoid
unnecessary fontwarning. 29

v1.6c – 1990/06/29
\changes: Again new sorting. . . . 49

v1.6e – 1991/04/03
theglossary: Turned into env

definition. 50
theindex: Turned into env

definition. 45
v1.7a – 1992/02/24

\codeline@index: Documented
code line no. support. 58

v1.7a – 1992/02/25
General: Altered usage info 20

Miscellaneous small changes to
the text 2

\theCodelineNo: Existing
definition not overwritten. . . . 59

v1.7a – 1992/02/26
General: Description of

\RecordChanges etc. added to
interface section. 13

Documented
\MakePrivateLetters in
interface section 14

Documented \verb change. 8
Note on need for some text in
macro env. 6

\@verbatim: Removed redundant
\tt. 31

\bslash: Moved \bslash
documentation to ‘user
interface’ part 31

\PrintIndex: Documentation
moved to interface section. . . 48

v1.7a – 1992/02/27
\add@special: Added for short

verb facility. 56

\DeleteShortVerb: Added (from
newdoc but now alters
\dospecials, \@sanitize). . . 55

\MakeShortVerb: Added (from
newdoc but now alters
\dospecials, \@sanitize). . . 54

\rem@special: Added for short
verb facility. 56

v1.7a – 1992/02/28
\DeleteShortVerb: Check for

previous matched
\MakeShortVerb to avoid error. 55

\wrong@table: Moved to where the
catcodes are right so it works. 58

v1.7a – 1992/03/02
\saved@macroname: Changed

string used for better sorting. 49
v1.7a – 1992/03/04

theindex: Include test for
multicols. 45

v1.7a – 1992/03/06
General: Added docstrip-derivable

driver file as example. 3
v1.7a – 1992/03/10

\short@macro: Ensure character
stored in \macro@namepart as
‘letter’ so index exclusion
works. 35

theglossary: Changed to work
without multicols if necessary. 50

v1.7a – 1992/03/11
General: Added basic usage

summary to spell it out. 14
glo.ist and gind.ist now derivable
from doc.dtx with docstrip. . . 43

Usage note on gind.ist. 11
v1.7a – 1992/03/12

\ch@angle: Added. 27
\ch@percent: Added. 27
\check@angle: Added. 27
\check@plus@etc: Added. 27
\CheckModules: Added. 27
\ifpm@module: Added. 26
\macro@font: Added to support

distinction of modules. 26
\Module: Added. 29
\pm@module: Added. 28
\slash@module: Added. 28
\theCodelineNo: Use \reset@font

for NFSS. 59
v1.7a – 1992/03/13

\MacroFont: Added \reset@font
for NFSS. 25

80

v1.7c – 1992/03/24
\@verbatim: Added

\interlinepenalty to \par
from verbatim.sty 31

\macro@code: Added
\interlinepenalty to \par
from verbatim.sty 25

v1.7c – 1992/03/25
\PercentIndex: Default now for

bug-fixed makeindex 44
v1.7c – 1992/03/26

\macro@font: Altered font change
for OFSS. 26

\mod@math@codes: Added. 29
\OldMakeindex: Replaced

\NewMakeIndex. 45
v1.7c – 1992/04/01

General: Expurgated ltugboat.sty
from driver. 3

v1.7d – 1992/04/25
\Module: Use sans font for

modules. 29
v1.7f – 1992/05/16

\guard@level: Added. 29
\slash@module: Take account of

nested guards. 28
v1.7g – 1992/06/19

\special@escape@char: Making
tilde active moved outside
definition 33

v1.7h – 1992/07/01
General: Turn off headings in gls

file . 48
v1.7i – 1992/07/11

\pm@module: Support for fonts
depending on nesting. 28

\slash@module: Add counter to
determine when to switch to
special font. 28

StandardModuleDepth: Counter
added. 29

v1.7i – 1992/07/12
\@verbatim: Added \@@par to

clear possible \parshape. 31
verbatim*: Added changed

definition for verbatim*. 31
v1.7i – 1992/07/17

\slash@module: Support for fonts
depending on module nesting . 28

v1.7j – 1992/08/14
\codeline@wrindex: Added

\if@filesw. 59
v1.7m – 1992/10/11

\macro@font: Use sltt as default. 26

v1.8a – 1993/05/19
\CodelineNumbered: Macro added 58

v1.8b – 1993/09/21
\@verbatim: Changed to conform

to new LaTeX verbatim, which
handles more ligatures. 31

\macro@code: Changed to conform
to new LaTeX verbatim, which
handles more ligatures. 25

v1.8c – 1993/10/25
\macro@font: NFSS standard . . . 26
\MacroFont: NFSS standard 25
\Module: NFSS standard 29

v1.9a – 1993/12/02
General: Upgrade for LaTeX2e . . . 1

v1.9b – 1993/12/03
\macro@code: Forcing any label

from macro env. 24
v1.9d – 1993/12/20

General: Protected changes entry. . 1
v1.9e.2 – 1994/02/07

\DeleteShortVerb: -js: Reset
‘cc‘⟨c⟩ in in \DeleteShortVerb 55

\MakeShortVerb: -js: Check if ⟨c⟩
is already an abbreviation for
\verb. 54

v1.9h – 1994/02/10
\PrintChanges: Use \@input@

instead of \@input. 51
\PrintIndex: Use \@input@

instead of \@input. 48
v1.9k – 1994/02/22

\ch@angle: Have < active 27
\macro@cnt: Fix probably no

longer necessary 32
v1.9n – 1994/04/28

\OnlyDescription: Ignore \Finale
if no \MaybeStop is given 52

v1.9o – 1994/05/08
\GetFileInfo: Macro added 61

v1.9r – 1994/06/09
\maketitle: Added new definitions

of \@makefnmark and
\@makefntext 53

v1.9t – 1995/05/11
General: Use \GetFileInfo 1

v1.9t – 1995/05/26
\macro@font: Removed

\math@fontsfalse (different
math setup /pr1622) 26

\MacroFont: Removed
\math@fontsfalse (different
math setup /pr1622) 25

81

v1.9u – 1995/08/06
\changes: Use \protected@edef 49

Use value of \saved@macroname
to find out about change
entries at outer level 49

\generalname: Macro added 50
\saved@macroname: Now empty by

default 49
v1.9v – 1995/11/03

\@MakeShortVerb: (DPC) Use
\@shortvrbinfo 54, 55

\@shortvrbinfo: (DPC) Macro
added 55

\DeleteShortVerb: (DPC) Use
\@shortvrbinfo 55

v1.9w – 1995/12/27
\AlsoImplementation: Macro

added 51
\index@prologue: Text changed . 46

v1.9w – 1995/12/29
\PrintChanges: Turn the cmd into

a noop after use. 51
\PrintIndex: Turn the cmd into a

noop after use. 48
v1.9x – 1996/01/11

\index@prologue: Text depends
on code lines used 46

v1.9y – 1996/01/26
\macro@font: Support compat

mode 26
\MacroFont: Support compat mode 26

v1.9z – 1997/02/05
\GetFileInfo: Missing percent

latex/2404 61
v2.0a – 1998/05/16

\macro@font: Support changing
\MacroFont in preamble 26

v2.0b – 1998/05/19
General: Init docs private

comment char at begin of
document again (pr2581) 22

v2.0e – 1998/12/28
\short@macro: Correctly use the

case-changing trick. 35
v2.0i – 2000/05/21

\meta: New implementation
(pr/3170) 52

v2.0j – 2000/05/22
\index@prologue: Less obscure

wording? (CAR pr/3202) . . . 46
v2.0k – 2000/05/26

\meta@font@select: Macro added
(pr/3170) 53

v2.0l – 2000/06/10
\meta: Fixing changes for

(pr/3170) 52
v2.0m – 2000/07/04

\meta: More fixing changes for
(pr/3170) 53

v2.0n – 2001/05/16
\check@plus@etc: Partly support

docstrip’s “verbatim” directive
(pr/3331) 28

v2.1a – 2003/12/09
\MakeShortVerb*: (HjG) Added *

form 54
v2.1a – 2003/12/10

\@shortvrbinfo: (HjG) Third
argument added on behalf of
\MakeShortVerb* 55

\DeleteShortVerb: (HjG) Notify
user if it’s not a short verb
character 55

v2.1d – 2006/02/02
General: Corrected description of

\changes macro. 13
v2.1e – 2010/02/04

\mod@math@codes: (pr/4096) . . . 29
v2.1f – 2016/02/12

\bslash@cnt: Suppress \CheckSum
check if no checksum is
specified in the file 57

\check@checksum: Suppress
\CheckSum check if no
checksum is specified in the file 56

v2.1g – 2016/02/15
\changes: Use \saved@indexname 49
\GlossaryParms: Use ragged

setting by default 51
\saved@indexname: Use

\saved@indexname 50
v2.1h – 2018/02/01

\DocstyleParms: Only
use\DocStyleParms if defined
(previously the test defined it) 60

v2.1j – 2019/11/03
verbatim*: Kernel now sets up

\verbvisiblespace (gh/205) . 31
v2.1k – 2019/11/10

verbatim*: Put the definition into
the right command (gh/205) . 31

v2.1l – 2019/12/16
\MacroFont: Use \shapedefault

not \updefault for extended
NFSS 26

82

v2.1m – 2020/06/15
\macro@code: Void \@labels for

vertical typesetting (gh/344) . 24
v3.0a – 2018/03/04

General: Integrated DoX package . 2
Interfaced hypdoc package 2

v3.0g – 2022/06/01
\changes: Show change dates if

asked for (gh/531) 49
v3.0h – 2022/06/01

General: fix choice key name
(gh/750) 22

fix default key name (gh/750) . 22
v3.0j – 2022/06/02

General: Use \providecommand to
define \pkg 1

v3.0k – 2022/06/22
General: Use \DeclareKeys 22

v3.0l – 2022/11/03
__doc_maybe_index_short:o: We

know the argument expands to

a single string token 40
\short@macro: No longer using the

case-changing trick. 35
\SpecialShortIndex: look for the

right token 41
v3.0m – 2022/11/13

General: Redefinitions of \verb
removed as no longer needed
(gh/953) 1

\@verbatim: Redefinitions of
\@verbatim changed to match
the kernel definition (gh/953) 31

v3.0o – 2023/12/30
\macro@code: Use \@noligs from

the LATEX kernel, so that the
upquote package can add its
patch (gh/1230) 25

v3.0q – 2024/06/04
General: Use hooks to save and

restore definitions when hypdoc
gets loaded (gh/1000) . . . 61, 71

83

	Contents
	1 Introduction
	2 The User Interface
	2.1 The driver file
	2.2 Package options
	2.3 General conventions
	2.4 Describing the usage of macros and environments
	2.5 Describing the definition of macros and environments
	2.6 Formatting names in the margin
	2.7 Providing further documentation items
	2.8 Displaying sample code verbatim
	2.9 Using a special escape character
	2.10 Cross-referencing all macros used
	2.11 Producing the actual index entries
	2.12 Setting the index entries
	2.13 Changing the default values of style parameters
	2.14 Short input of verbatim text pieces
	2.15 Additional bells and whistles

	3 Examples and basic usage summary
	3.1 Basic usage summary
	3.2 Examples

	4 Incompatibilities between version 2 and 3
	5 Old interfaces no longer really needed
	5.1 makeindex bugs
	5.2 File transmission issues

	6 Introduction to previous releases
	7 The Description of Macros
	7.1 Keys supported by doc
	7.2 Processing the package keys
	7.3 Macros surrounding the `definition parts'
	7.4 Macros for the `documentation parts'
	7.5 Formatting the margin
	7.6 Creating index entries by scanning `macrocode'
	7.7 Macros for scanning macro names
	7.8 The index exclude list
	7.9 Macros for generating index entries
	7.10 Redefining the index environment
	7.11 Dealing with the change history
	7.12 Bells and whistles
	7.13 Providing a checksum and character table
	7.14 Attaching line numbers to code lines
	7.15 Layout Parameters for documenting package files
	7.16 Changing the 捡琠code of %
	7.17 GetFileInfo

	8 Integrating hypdoc
	9 Integrating the DoX package code
	9.1 DoX environments
	9.2 doc descriptions
	9.3 API construction
	9.4 API creation
	9.5 Setting up the default doc elements
	9.5.1 Macro facilities
	9.5.2 Environment facilities

	10 Misc additions
	References
	Index
	Symbols
	L
	P
	T

	Change History

